UV AND XUV QUANTUM DETECTION EFFICIENCIES OF CSI-COATED MICROCHANNEL PLATES

Abstract Quantum efficiency measurements are presented for CsI-coated microchannel plates in the waveband 25–200 nm. The influence of exposure to a humid atmosphere on the efficiency of the CsI-photocathode has been studied in great detail. Due to the very high susceptibility of CsI to humidity, particularly for wavelengths longer than 140 nm, the best quantum efficiencies have been obtained for a CsI-coated channelplate continuously stored in vacuum. The results are interpreted on the basis of photoelectron emission theory.

[1]  L. Heroux,et al.  The influence of cathode thickness and aging on the photoelectric yields of LiF and CsI in the xuv. , 1966, Applied optics.

[2]  H. Philipp,et al.  Photoelectric emission from the valence band of some alkali halides , 1957 .

[3]  A. Peacock,et al.  The gas scintillation proportional counter , 1984 .

[4]  G. Fraser,et al.  The soft X-ray detection efficiency of coated microchannel plates , 1984 .

[5]  Edward L. Garwin,et al.  Electron‐Phonon Interaction in Alkali Halides. I. The Transport of Secondary Electrons with Energies between 0.25 and 7.5 eV , 1969 .

[6]  R. Malina,et al.  Maximizing the quantum efficiency of microchannel plate detectors: The collection of photoelectrons from the interchannel web using an electric field , 1983 .

[7]  K. Teegarden,et al.  Ultraviolet Absorption of Alkali Halides , 1959 .

[8]  P. A. J. de Korte,et al.  Performance of an Imaging Gas Scintillation Proportional Counter with Microchannelplate Read-Out , 1985, IEEE Transactions on Nuclear Science.

[9]  A. C. Brinkman,et al.  The X-ray imaging telescopes on Exosat , 1981 .

[10]  James F. Pearson,et al.  Soft X-ray energy resolution with microchannel plate detectors of high quantum detection efficiency. , 1984 .

[11]  Edward L. Garwin,et al.  Electron‐Phonon Interaction in Alkali Halides. II. Transmission Secondary Emission from Alkali Halides , 1969 .

[12]  G. W. Fraser,et al.  Enhanced soft X-ray detection efficiencies for imaging microchannel plate detectors , 1982, Nature.

[13]  E. B. Saloman,et al.  Evaluation of high efficiency Csl and Cul photocathodes for soft x-ray diagnostics. , 1980, Applied optics.

[14]  F. Paresce,et al.  Continuous discharge line source for the extreme ultraviolet. , 1971, Applied optics.

[15]  P. Metzger,et al.  On the quantum efficiencies of twenty alkali halides in the 12–21 eV region , 1965 .

[17]  C Martin,et al.  Quantum efficiency of opaque Csl photocathodes with channel electron multiplier arrays in the extreme and far ultraviolet. , 1982, Applied optics.

[18]  G. W. Fraser,et al.  The characterisation of soft X-ray photocathodes in the wavelength band 1-300 Å. I. Lead glass, lithium fluoride and magnesium fluoride , 1983 .

[19]  A. Weinstein,et al.  Sensitive far uv spectrograph with a multispectral element microchannel plate detector for rocket-borne astronomy. , 1976, Applied optics.

[20]  D. A. Patterson,et al.  INFLUENCE OF CRYSTAL SURFACE ON THE OPTICAL TRANSMISSION OF LITHIUM FLUORIDE IN THE VACUUM-ULTRAVIOLET SPECTRUM , 1963 .

[21]  G. W. Fraser The characterisation of soft X-ray photocathodes in the wavelength band 1–300 Å: II. Caesium iodide and other insulators of high photoelectric yield , 1983 .

[22]  James F. Pearson,et al.  The stability of CsI-coated microchannel plate X-ray detectors , 1984 .