Inherent optical properties of pollen particles: a case study for the morning glory pollen.

Biological aerosols, such as bacteria, fungal spores, and pollens, play an important role on various atmospheric processes, whereas their inherent optical property is one of the most uncertainties that limit our ability to assess their effects on weather and climate. A numerical model with core-shell structure, hexagonal grids and barbs is developed to represent one kind of realistic pollen particles, and their inherent optical properties are simulated using a pseudo-spectral time domain method. Both the hexagonal grids and barbs substantially affect the modeled pollen optical properties. Results based on the realistic particle model are compared with two equivalent spherical approximations, and the significant differences indicate the importance of considering pollen geometries for their optical properties.

[1]  A. Uchiyama,et al.  Shape modeling of mineral dust particles for light-scattering calculations using the spatial Poisson-Voronoi tessellation , 2010 .

[2]  Sonia L. Fontana,et al.  From early pollen trapping experiments to the Pollen Monitoring Programme , 2010 .

[3]  Effect of coarse biogenic aerosol on downwelling infrared flux at the surface , 2000 .

[4]  C. Bohren,et al.  Vertical elliptical coronas caused by pollen. , 1994, Applied optics.

[5]  H. Godwin,et al.  An Introduction to Pollen Analysis , 1944, Nature.

[6]  David L. Williamson,et al.  Integration of the barotropic vorticity equation on a spherical geodesic grid , 1968 .

[7]  Junshik Um,et al.  Formation of atmospheric halos and applicability of geometric optics for calculating single-scattering properties of hexagonal ice crystals: Impacts of aspect ratio and ice crystal size , 2015 .

[8]  Ulrich Panne,et al.  Chemical characterization and classification of pollen. , 2008, Analytical chemistry.

[9]  K. Liou,et al.  Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space , 1996 .

[10]  W. Schneider,et al.  Experimental simulations of pollen coronas. , 2005, Applied optics.

[11]  G. McFarquhar,et al.  Dependence of the single-scattering properties of small ice crystals on idealized shape models , 2010 .

[12]  P. Yang,et al.  The effective equivalence of geometric irregularity and surface roughness in determining particle single-scattering properties. , 2014, Optics express.

[13]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[14]  Qing Huo Liu,et al.  The PSTD algorithm: A time-domain method requiring only two cells per wavelength , 1997 .

[15]  G. McFarquhar,et al.  Optimal numerical methods for determining the orientation averages of single-scattering properties of atmospheric ice crystals , 2013 .

[16]  Hester Volten,et al.  Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm , 2001 .

[17]  G. Kattawar,et al.  Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  Kenneth Sassen,et al.  Boreal tree pollen sensed by polarization lidar: Depolarizing biogenic chaff , 2008 .

[19]  K. Sahr,et al.  Geodesic Discrete Global Grid Systems , 2003 .

[20]  Yunnan Fang,et al.  Conversion of Pollen Particles into Three-Dimensional Ceramic Replicas Tailored for Multimodal Adhesion , 2013 .

[21]  S. Martin,et al.  Sources and properties of Amazonian aerosol particles , 2010 .

[22]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[23]  P. Yang,et al.  Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200 , 2012 .

[24]  T. Nousiainen,et al.  Light scattering by feldspar particles: Comparison of model agglomerate debris particles with laboratory samples , 2013 .

[25]  Ping Yang,et al.  Inhomogeneity structure and the applicability of effective medium approximations in calculating light scattering by inhomogeneous particles , 2014 .

[26]  P. Yang,et al.  Modeling the scattering properties of mineral aerosols using concave fractal polyhedra. , 2013, Applied optics.

[27]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[28]  E. Cuche,et al.  Cell refractive index tomography by digital holographic microscopy. , 2006, Optics letters.

[29]  T. Painter,et al.  Atmospheric bioaerosols transported via dust storms in the western United States , 2011 .

[30]  D. Murphy,et al.  Biogenesis and function of the lipidic structures of pollen grains , 1998, Sexual Plant Reproduction.

[31]  Ran Nathan,et al.  Understanding strategies for seed dispersal by wind under contrasting atmospheric conditions , 2008, Proceedings of the National Academy of Sciences.

[32]  Q. Fu,et al.  Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition. , 1999, Applied optics.

[33]  O. Tackenberg Modeling long‐distance dispersal of plant diaspores by wind , 2003 .

[34]  H. Iwabuchi,et al.  Photographic observation and optical simulation of a pollen corona display in Japan. , 2015, Applied optics.

[35]  W. D. Griffiths,et al.  The assessment of bioaerosols: A critical review , 1994 .

[36]  P. Yang,et al.  Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations , 2012 .

[37]  Milton Kerker,et al.  Scattering of Electromagnetic Waves from Two Concentric Spheres , 1951 .

[38]  Ming-Yih Chen,et al.  Pollen morphology of Cuscuta (Convolvulaceae) in Taiwan. , 2005 .

[39]  R. Jaenicke,et al.  Primary biological aerosol particles in the atmosphere: a review , 2012 .

[40]  E. Tränkle,et al.  Simulation and analysis of pollen coronas. , 1994, Applied optics.

[41]  Ping Yang,et al.  Backscattering peak of ice cloud particles. , 2015, Optics express.

[42]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[43]  Q. Fu,et al.  Scattered-field FDTD and PSTD algorithms with CPML absorbing boundary conditions for light scattering by aerosols , 2013 .