Discretized Gabor Frames of Totally Positive Functions

In this paper, a large class of universal windows for Gabor frames (Weyl-Heisenberg frames) is constructed. These windows have the fundamental property that every overcritical rectangular lattice generates a Gabor frame. Likewise, every undercritical rectangular lattice generates a Riesz sequence.

[1]  Yehoshua Y. Zeevi,et al.  Multi-window Gabor schemes in signal and image representations , 1998 .

[2]  D. Walnut,et al.  Differentiation and the Balian-Low Theorem , 1994 .

[3]  K. Seip Density theorems for sampling and interpolation in the Bargmann-Fock space I , 1992, math/9204238.

[4]  I. J. Schoenberg,et al.  ON POLYA FREQUENCY FUNCTIONS. III. THE POSITIVITY OF TRANSLATION DETERMINANTS WITH AN APPLICATION TO THE INTERPOLATION PROBLEM BY SPLINE CURVES( , 1953 .

[5]  Helmut Bölcskei,et al.  Orthogonal Frequency Division Multiplexing Based on Offset QAM , 2003 .

[6]  H. Feichtinger,et al.  Gabor analysis over finite Abelian groups , 2007, math/0703228.

[7]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[8]  Peter L. Søndergaard,et al.  Gabor frames by sampling and periodization , 2007, Adv. Comput. Math..

[9]  C. Heil A basis theory primer , 2011 .

[10]  Gary Nelson Some Insights into MIDI Communication with the Yamaha DX7 , 1986 .

[11]  W. Delb,et al.  Phase Stability Analysis of Chirp Evoked Auditory Brainstem Responses by Gabor Frame Operators , 2009, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[12]  T. Strohmer,et al.  Hyperbolic secants yield Gabor frames , 2002, math/0301134.

[13]  C. Heil History and Evolution of the Density Theorem for Gabor Frames , 2007 .

[14]  K. Grōchenig,et al.  Gabor Frames and Totally Positive Functions , 2011, 1104.4894.

[15]  Yehoshua Y. Zeevi,et al.  Image representation using non-canonical discrete multiwindow Gabor frames , 2007 .

[16]  Oleg V. Michailovich,et al.  A high-resolution technique for ultrasound harmonic imaging using sparse representations in Gabor frames , 2002, IEEE Transactions on Medical Imaging.

[17]  C. Letrou,et al.  Printed antennas analysis by a Gabor frame-based method of moments , 2002 .

[18]  Manfred Martin Hartmann,et al.  Analysis, Optimization, and Implementation of Low-Interference Wireless Multicarrier Systems , 2007, IEEE Transactions on Wireless Communications.

[19]  Selin Aviyente,et al.  Compressed Sensing Framework for EEG Compression , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[20]  Ajem Guido Janssen,et al.  Some Weyl-Heisenberg frame bound calculations , 1996 .

[21]  A. Ron,et al.  Weyl-Heisenberg Frames and Riesz Bases in L2(Rd). , 1994 .

[22]  O. Christensen Approximation of the Inverse Frame Operator , 2016 .

[23]  I. J. Schoenberg On Pólya Frequency Functions , 1988 .

[24]  Christopher Heil,et al.  A DISCRETE ZAK TRANSFORM , 1989 .

[25]  A. Janssen On Generating Tight Gabor Frames at Critical Density , 2003 .

[26]  Helmut Bölcskei,et al.  Gabor frames, unimodularity, and window decay , 2000 .

[27]  A. Janssen From continuous to discrete Weyl-Heisenberg frames through sampling , 1997 .

[28]  A. Ron,et al.  Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .

[29]  Joseph Picone,et al.  Signal modeling techniques in speech recognition , 1993, Proc. IEEE.

[30]  Resear,et al.  Zak Transforms With Few Zeros and the Tie , 2022 .

[31]  Gerhard Wunder,et al.  The WSSUS Pulse Design Problem in Multicarrier Transmission , 2005, IEEE Transactions on Communications.

[32]  Helmut Bölcskei,et al.  Discrete Zak transforms, polyphase transforms, and applications , 1997, IEEE Trans. Signal Process..

[33]  Thomas Strohmer Rates of convergence for the approximation of dual shift-invariant systems in ℓ2(ℤ) , 1999 .

[34]  Norbert Kaiblinger,et al.  Approximation of the Fourier Transform and the Dual Gabor Window , 2005 .

[35]  Mark Dolson,et al.  The Phase Vocoder: A Tutorial , 1986 .

[36]  A. Janssen Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .

[37]  Gerald Matz,et al.  Wireless Communications Over Rapidly Time-Varying Channels , 2011 .

[38]  Vincenza Del Prete,et al.  Estimates, decay properties, and computation of the dual function for Gabor frames , 1999 .

[39]  Shlomo Shamai,et al.  Information Theory of Underspread WSSUS Channels , 2011 .

[40]  Joachim Stöckler,et al.  Zak transforms and Gabor frames of totally positive functions and exponential B-splines , 2013, J. Approx. Theory.

[41]  O. Christensen,et al.  Approximation of the Inverse Frame Operator and Applications to Gabor Frames , 2000 .

[42]  T. Strohmer Approximation of Dual Gabor Frames, Window Decay, and Wireless Communications , 2000, math/0010244.

[43]  Ole Christensen,et al.  Frames and Bases , 2008 .

[44]  A. Janssen The Zak transform : a signal transform for sampled time-continuous signals. , 1988 .

[45]  I. Daubechies,et al.  Frames in the Bargmann Space of Entire Functions , 1988 .