Efficient Raman generation in a waveguide: A route to ultrafast quantum random number generation

The inherent uncertainty in quantum mechanics offers a source of true randomness which can be used to produce unbreakable cryptographic keys. We discuss the development of a high-speed random number generator based on the quantum phase fluctuations in spontaneously initiated stimulated Raman scattering (SISRS). We utilize the tight confinement and long interaction length available in a Potassium Titanyl Phosphate waveguide to generate highly efficient SISRS using nanojoule pulse energies, reducing the high pump power requirements of the previous approaches. We measure the random phase of the Stokes output using a simple interferometric setup to yield quantum random numbers at 145 Mbps.

[1]  H. Schmidt Quantum‐Mechanical Random‐Number Generator , 1970 .

[2]  M Jofre,et al.  True random numbers from amplified quantum vacuum. , 2011, Optics express.

[3]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[4]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[5]  Walmsley,et al.  Experimental study of the macroscopic quantum fluctuations of partially coherent stimulated Raman scattering. , 1986, Physical review. A, General physics.

[6]  Markus Jakobsson,et al.  How to turn loaded dice into fair coins , 2000, IEEE Trans. Inf. Theory.

[7]  Xiongfeng Ma,et al.  Ultrafast quantum random number generation based on quantum phase fluctuations. , 2011, Optics express.

[8]  N. Gisin,et al.  Optical quantum random number generator , 1999, quant-ph/9907006.

[9]  Beck,et al.  Many-port homodyne detection of an optical phase. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[10]  M. Wahl,et al.  An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements , 2011 .

[11]  H. Weinfurter,et al.  A fast and compact quantum random number generator , 1999, quant-ph/9912118.

[12]  H. Weinfurter,et al.  High speed optical quantum random number generation. , 2010, Optics express.

[13]  Hong Guo,et al.  Truly random number generation based on measurement of phase noise of a laser. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  R. Dong,et al.  A generator for unique quantum random numbers based on vacuum states , 2010 .

[15]  F. Ganikhanov,et al.  Ultrafast decay of high frequency optical phonon mode in KTiOPO4 , 2011 .

[16]  H. Lo,et al.  High-speed quantum random number generation by measuring phase noise of a single-mode laser. , 2010, Optics letters.

[17]  F. Benabid,et al.  Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber , 2002, Science.

[18]  Michael Spanner,et al.  Quantum random bit generation using energy fluctuations in stimulated Raman scattering. , 2013, Optics express.

[19]  A. W. Sharpe,et al.  A High Speed, Post-Processing Free, Quantum Random Number Generator , 2008, ArXiv.

[20]  Raymer,et al.  Observation of extreme sensitivity to induced molecular coherence in stimulated Raman scattering. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[21]  S. Selvasekarapandian,et al.  Raman and FT-IR spectroscopic characterisation of flux grown KTiOPO4 and KRbTiOPO4 non-linear optical crystals , 1997 .

[22]  Kuo,et al.  Spatial interference of macroscopic light fields from independent Raman sources. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[23]  Alexander A. Sobol,et al.  Raman spectroscopy of crystals for stimulated Raman scattering , 1999 .

[24]  I. Walmsley,et al.  Quantum random bit generation using stimulated Raman scattering. , 2011, Optics express.

[25]  F. Laurell,et al.  Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4 , 2006 .

[26]  L. Tian,et al.  Practical quantum random number generator based on measuring the shot noise of vacuum states , 2010 .

[27]  Rüdiger Paschotta,et al.  Compact Nd:YVO/sub 4/ lasers with pulse repetition rates up to 160 GHz , 2002 .

[28]  Ian A. Walmsley,et al.  III The Quantum Coherence Properties of Stimulated Raman Scattering , 1990 .

[29]  Hong Guo,et al.  Bias-free true random-number generator. , 2009, Optics letters.

[30]  Fredrik Laurell,et al.  Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4 , 2003 .

[31]  Alireza Marandi,et al.  All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators. , 2012, Optics express.

[32]  Xiang Zhang,et al.  Experimental Certification of Random Numbers via Quantum Contextuality , 2013, Scientific Reports.

[33]  H. Zeng,et al.  Quantum random-number generator based on a photon-number-resolving detector , 2011 .

[34]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[35]  T. Symul,et al.  Real time demonstration of high bitrate quantum random number generation with coherent laser light , 2011, 1107.4438.