Leistungsstarkes Fluoralkoxy‐Molybdän(V)‐Reagens für die selektive oxidative Arenkupplung

Wir stellen ein neues Fluoralkoxy-Molybdan(V)-Reagens 1, mit im Vergleich zu MoCl5 oder MoCl5/TiCl4 hoherer Reaktivitat und Selektivitat in der oxidativen Kupplung von Arenen vor. Haufige Nebenreaktionen wie Chlorierung und/oder Oligomerenbildung werden erheblich reduziert, sodass ein leistungsstarkes und nutzliches Reagens fur die oxidative Kupplung erhalten wird. Theoretische Untersuchungen der Wechselwirkung des Reagens mit 1,2-Dimethoxybenzol-artigen Substraten deuten auf einen Innenspharen-Elektronentransfer gefolgt von einem radikalkationischen Reaktionspfad fur den oxidativen Kupplungsprozess hin. ESR-spektroskopische und elektrochemische Untersuchungen, Rontgenkristallstrukturanalysen, computerchemische Studien sowie vergleichende Substratuntersuchungen ergeben ein hoch konsistentes Bild. Die Substitution von Chlorido- durch Hexafluorisopropoxido-Liganden scheint sowohl die Reaktivitat als auch die Selektivitat des Metallzentrums zu erhohen, weswegen diese Strategie auf andere Metallzentren ubertragbar sein sollte.

[1]  Holger Butenschön,et al.  Oxidative aromatische Kupplung und Scholl‐Reaktion im Vergleich , 2013 .

[2]  K. Skonieczny,et al.  Comparison of oxidative aromatic coupling and the Scholl reaction. , 2013, Angewandte Chemie.

[3]  S. Waldvogel,et al.  Oxidative transformation of aryls using molybdenum pentachloride. , 2012, Chemical communications.

[4]  S. Waldvogel,et al.  Synthesis of highly functionalized 9,10-phenanthrenequinones by oxidative coupling using MoCl5. , 2012, Organic letters.

[5]  R. Kötz,et al.  Novel electrolytes for electrochemical double layer capacitors based on 1,1,1,3,3,3-hexafluoropropan-2-ol , 2012 .

[6]  Siegfried R. Waldvogel,et al.  Efficient anodic and direct phenol-arene C,C cross-coupling: the benign role of water or methanol. , 2012, Journal of the American Chemical Society.

[7]  K. Morimoto,et al.  Metal‐Free Oxidative Coupling Reactions via σ‐Iodonium Intermediates: The Efficient Synthesis of Bithiophenes Using Hypervalent Iodine Reagents , 2011 .

[8]  S. Waldvogel,et al.  Oxidative Coupling Reactions of 1,3‐Diarylpropene Derivatives to Dibenzo[a,c]cycloheptenes by PIFA , 2011 .

[9]  K. Morimoto,et al.  Metal-free C-H cross-coupling toward oxygenated naphthalene-benzene linked biaryls. , 2011, Organic letters.

[10]  S. Waldvogel,et al.  Anodic coupling of guaiacol derivatives on boron-doped diamond electrodes. , 2011, Organic letters.

[11]  S. Waldvogel,et al.  Novel domino oxidative coupling: C-C bond formation sequence to highly functionalized dibenzo[a,c]cycloheptenes. , 2011, Organic letters.

[12]  R. Sebastián,et al.  Direct assembly of polyarenes via C-C coupling Using PIFA/BF3·Et2O. , 2010, Journal of the American Chemical Society.

[13]  K. Morimoto,et al.  Metal-free regioselective oxidative biaryl coupling leading to head-to-tail bithiophenes: reactivity switching, a concept based on the iodonium(III) intermediate. , 2010, Organic letters.

[14]  T. Dohi,et al.  Fluoroalcohols: versatile solvents in hypervalent iodine chemistry and syntheses of diaryliodonium(III) salts , 2010 .

[15]  S. Waldvogel,et al.  Anodische Phenol‐Aren‐Kreuzkupplung an bordotierten Diamantelektroden , 2010 .

[16]  S. Waldvogel,et al.  Anodic phenol-arene cross-coupling reaction on boron-doped diamond electrodes. , 2010, Angewandte Chemie.

[17]  Martin Nieger,et al.  ortho-Selective phenol-coupling reaction by anodic treatment on boron-doped diamond electrode using fluorinated alcohols. , 2009, Chemistry.

[18]  T. Dohi,et al.  A new H2O2/acid anhydride system for the iodoarene-catalyzed C-C bond-forming reactions of phenols. , 2008, Organic letters.

[19]  K. Morimoto,et al.  Oxidative cross-coupling of arenes induced by single-electron transfer leading to biaryls by use of organoiodine(III) oxidants. , 2008, Angewandte Chemie.

[20]  B. T. King,et al.  Controlling the Scholl reaction. , 2007, The Journal of organic chemistry.

[21]  E. L. Mccann,et al.  Molybdenum(IV) Chloride , 2007 .

[22]  K. Morimoto,et al.  Versatile hypervalent-iodine(III)-catalyzed oxidations with m-chloroperbenzoic acid as a cooxidant. , 2005, Angewandte Chemie.

[23]  Siegfried R. Waldvogel,et al.  Synthesis of Rigid Receptors Based on Triphenylene Ketals , 2005 .

[24]  K. Morimoto,et al.  The synthesis of head-to-tail (H-T) dimers of 3-substituted thiophenes by the hypervalent iodine(III)-induced oxidative biaryl coupling reaction. , 2005, Chemical communications.

[25]  Siegfried R. Waldvogel,et al.  Hochmodularer Aufbau unterschiedlich substituierter Dihydrodibenzo[a,c]cycloheptene: ein schneller und effizienter Zugang zu Derivaten des 2,2′‐Cyclo‐7,8′‐neolignans , 2004 .

[26]  S. Waldvogel,et al.  Highly modular construction of differently substituted dihydrodibenzo[a,c]cycloheptenes: fast and efficient access to derivatives of 2,2'-cyclo-7,8'-neolignans. , 2004, Angewandte Chemie.

[27]  K. S. Feldman,et al.  Oxidative Aryl‐Coupling Reactions in Synthesis , 2004 .

[28]  R. Fröhlich,et al.  Oxidative Coupling Reactions Mediated by MoCl5 Leading to 2,2′-Cyclolignans: The Specific Role of HCl , 2003 .

[29]  S. Waldvogel,et al.  Highly selective formation of eight-membered-ring systems by oxidative cyclization with molybdenum pentachloride-an environmentally friendly and inexpensive access to 2,2'-cyclolignans. , 2002, Angewandte Chemie.

[30]  S. Waldvogel,et al.  Dehydrodimerization of iodobenzenes to iodinated biaryls. , 2002, Chemical communications.

[31]  S. Waldvogel The Reaction Pattern of the MoCl5-Mediated Oxidative Aryl-aryl Coupling , 2002 .

[32]  Y. Kita,et al.  Efficient oxidative biaryl coupling reaction of phenol ether derivatives using hypervalent iodine(III) reagents , 2001 .

[33]  R. Fröhlich,et al.  Erster künstlicher Koffeinrezeptor – ein neues Konzept zur Komplexierung alkylierter Oxopurine , 2000 .

[34]  Fröhlich,et al.  First Artificial Receptor for Caffeine-A New Concept for the Complexation of Alkylated Oxopurines This work was supported by the Fonds der Chemischen Industrie (Liebig fellowships for S.R.W. and C.A.S.) and the Deutsche Akademie der Naturforscher Leopoldina/BMBF (postdoctoral fellowship for C.A.S.). , 2000, Angewandte Chemie.

[35]  J. Rebek,et al.  A TRIPHENYLENE SCAFFOLD WITH C3V-SYMMETRY AND NANOSCALE DIMENSIONS , 1999 .

[36]  J. Beck,et al.  Three New Polymorphic Forms of Molybdenum Pentachloride , 1997 .

[37]  C. Limberg,et al.  Intermediates and products of the reaction of MoCl5 withethanol: crystal structures of [MoOCl3(EtOH)] andH[MoOCl4]·2EtOH , 1997 .

[38]  S. Schlick,et al.  BINDING AND TRANSPORT OF MOV IN PERFLUORINATED IONOMERS BY EPR AND EPR IMAGING , 1996 .

[39]  S. Schlick,et al.  Catalysis on polymer supports: ESR of molybdenum (V) dispersed in poly(acrylic acid) matrices , 1993 .

[40]  L. Romano,et al.  Vicinal chlorination of alkyl chlorides with molybdenum(V) chloride , 1975 .

[41]  L. Romano,et al.  Halogen interchange in alkyl halides using molybdenum(V) chloride , 1975 .

[42]  L. Romano,et al.  Chlorination of alkenes and alkynes with molybdenum(V) chloride [15] , 1975 .

[43]  P. Kovacic,et al.  Reactions of Molybdenum Pentachloride and Vanadium Tetrachloride with Alkyl- and Halobenzenes1 , 1965 .