An Automatic Face Detection System for RGB Images

We propose a robust face detection approach that works for digital color images. Our automatic detection method is based on image skin regions, therefore a skin-based segmentation of RGB images is provided first. Then, we decide for each skin region if it represents a human face or not, using a set of candidate criteria, an edge detection process, a correlation based technique and a threshold-based method. A high face detection rate is obtained using the proposed method.

[1]  Ingvar Claesson,et al.  Face Detection using Local SMQT Features and Split up Snow Classifier , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[2]  Takeshi Mita,et al.  Component-based robust face detection using AdaBoost and decision tree , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[3]  T. K. Leungfj,et al.  Finding Faces in Cluttered Scenes using Random Labeled Graph Matching , 1995 .

[4]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Roberto Cipolla,et al.  A probabilistic framework for perceptual grouping of features for human face detection , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[6]  Thomas S. Huang,et al.  Human face detection in a complex background , 1994, Pattern Recognit..

[7]  Federico Girosi,et al.  An improved training algorithm for support vector machines , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[8]  A. L. Edwards,et al.  An introduction to linear regression and correlation. , 1985 .

[9]  Hamzah Arof,et al.  Pattern correlation approach towards face detection system framework , 2008, 2008 International Symposium on Information Technology.

[10]  H. Heijmans Morphological image operators , 1994 .

[11]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[12]  Monson H. Hayes,et al.  An embedded HMM-based approach for face detection and recognition , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[13]  Marcel Worring,et al.  Face detection by aggregated Bayesian network classifiers , 2001, Pattern Recognit. Lett..

[14]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[16]  Tudor Barbu Eigenimage-Based Facial Recognition Technique Using Gradient Covariance , 2007 .

[17]  Rong Yang,et al.  Machine Learning and Data Mining in Pattern Recognition , 2012, Lecture Notes in Computer Science.

[18]  David A. Forsyth,et al.  Identifying nude pictures , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[19]  Hitoshi Imaoka,et al.  Advances in face detection and recognition technologies , 2005 .

[20]  Linda G. Shapiro,et al.  Computer Vision , 2001 .

[21]  Vladimir Vezhnevets,et al.  A Survey on Pixel-Based Skin Color Detection Techniques , 2003 .

[22]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Jing-Yu Yang,et al.  Face detection using template matching and skin-color information , 2007, Neurocomputing.