Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling
暂无分享,去创建一个
André D. Bandrauk | François Fillion-Gourdeau | Emmanuel Lorin | A. Bandrauk | E. Lorin | F. Fillion-Gourdeau
[1] Bernd Thaller. Visualizing the kinematics of relativistic wave packets , 2004 .
[2] Rainer Grobe,et al. Effects of relativity on the time-resolved tunneling of electron wave packets , 2001 .
[3] Christoph H. Keitel,et al. Relativistic high-power laser–matter interactions , 2006 .
[4] F. Wilczek,et al. Lattice fermions. , 1987, Physical review letters.
[5] A. A. Perov,et al. Space-time evolution of Dirac wave packets , 2010, 1007.1566.
[6] Bottcher,et al. Numerical solution of the time-dependent Dirac equation with application to positron production in heavy-ion collisions. , 1985, Physical review letters.
[7] J. Kogut,et al. Hamiltonian Formulation of Wilson's Lattice Gauge Theories , 1975 .
[8] Eva Lindroth,et al. Solution of the Dirac equation for hydrogenlike systems exposed to intense electromagnetic pulses , 2009 .
[9] T. Brabec,et al. Semiclassical Dirac theory of tunnel ionization. , 2002, Physical review letters.
[10] John B. Kogut,et al. The lattice gauge theory approach to quantum chromodynamics , 1983 .
[11] T. Lappi,et al. Quark-antiquark production from classical fields in heavy-ion collisions: 1+1 dimensions , 2005 .
[12] G. L. Payne,et al. Relativistic Quantum Mechanics , 2007 .
[13] Walter Greiner,et al. Relativistic Quantum Mechanics. Wave Equations , 1997 .
[14] Guido R. Mocken,et al. Quantum dynamics of relativistic electrons , 2004 .
[15] Chunxiong Zheng,et al. A time-splitting spectral scheme for the Maxwell-Dirac system , 2005, 1205.0368.
[16] H. Nielsen,et al. Absence of neutrinos on a lattice: (I). Proof by homotopy theory , 1981 .
[17] André D. Bandrauk,et al. Complex integration steps in decomposition of quantum exponential evolution operators , 2006 .
[18] R. Stacey,et al. Eliminating lattice fermion doubling , 1982 .
[19] Maria J. Esteban,et al. A short review on computational issues arising in relativistic atomic and molecular physics , 2007 .
[20] L. Ryder,et al. Quantum Field Theory , 2001, Foundations of Modern Physics.
[21] Carleton DeTar,et al. Lattice methods for quantum chromodynamics , 2006 .
[22] Joachim Reinhardt,et al. Quantum electrodynamics of strong fields , 1985 .
[23] Paul Indelicato,et al. Computational approaches of relativistic models in quantum chemistry , 2003 .
[24] Christoph H. Keitel,et al. A real space split operator method for the Klein-Gordon equation , 2009, J. Comput. Phys..
[25] S. Salomonson,et al. Relativistic all-order pair functions from a discretized single-particle Dirac Hamiltonian. , 1989, Physical review. A, General physics.
[26] Howard R. Reiss. Quantum Electrodynamics of Strong Fields , 1986 .
[27] Christoph H. Keitel,et al. Accelerating the Fourier split operator method via graphics processing units , 2010, Comput. Phys. Commun..
[28] O. Klein,et al. Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac , 1929 .
[29] Belkacem,et al. Numerical treatment of the time-dependent Dirac equation in momentum space for atomic processes in relativistic heavy-ion collisions. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[30] L. Milne‐Thomson. A Treatise on the Theory of Bessel Functions , 1945, Nature.
[31] H. Nielsen,et al. Absence of neutrinos on a lattice: (II). Intuitive topological proof , 1981 .
[32] M. I. Katsnelson,et al. Chiral tunnelling and the Klein paradox in graphene , 2006 .
[33] Rainer Grobe,et al. Numerical approach to solve the time-dependent Dirac equation , 1999 .
[34] Leonard Susskind,et al. Strong Coupling Calculations of Lattice Gauge Theories: (1+1)-Dimensional Exercises , 1976 .
[35] Guido R. Mocken,et al. FFT-split-operator code for solving the Dirac equation in 2+1 dimensions , 2008, Comput. Phys. Commun..
[36] Q. Su,et al. Klein paradox in spatial and temporal resolution. , 2004, Physical review letters.
[37] F. Wilczek. Quantum Field Theory , 1998, hep-th/9803075.
[38] Guido R. Mocken,et al. Relativistic ionization characteristics of laser-driven hydrogenlike ions , 2011 .
[39] Q. Su,et al. Relativistic suppression of wave packet spreading. , 1998, Optics express.
[40] André D. Bandrauk,et al. A simple and accurate mixed P0–Q1 solver for the Maxwell–Dirac equations , 2011 .
[41] Werner Scheid,et al. FINITE ELEMENT FORMULATION OF THE DIRAC EQUATION AND THE PROBLEM OF FERMION DOUBLING , 1998 .
[42] Fritz Sauter,et al. Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs , 1931 .
[43] Weizhu Bao,et al. An efficient and stable numerical method for the Maxwell-Dirac system , 2004 .
[44] A. Calogeracos,et al. Seventy years of the Klein paradox , 1999 .
[45] Werner Scheid,et al. Solution of the time-dependent Dirac equation by the finite difference method and application for Ca20++U91+ , 1983 .