Critical well-posedness and scattering results for fractional Hartree-type equations
暂无分享,去创建一个
[1] T. Ozawa,et al. On small data scattering of Hartree equations with short-range interaction , 2016 .
[2] Achenef Tesfahun,et al. Small data scattering for semi-relativistic equations with Hartree type nonlinearity , 2014, 1412.1626.
[3] D. Tataru,et al. Dispersive Equations and Nonlinear Waves: Generalized Korteweg–de Vries, Nonlinear Schrödinger, Wave and Schrödinger Maps , 2014 .
[4] F. Pusateri. Modified Scattering for the Boson Star Equation , 2013, 1308.6600.
[5] S. Herr,et al. The Boson star equation with initial data of low regularity , 2013, 1305.6392.
[6] T. Ozawa,et al. On the Cauchy Problem of Fractional Schrödinger Equation with Hartree Type Nonlinearity , 2012, 1209.5899.
[7] Kay L Kirkpatrick,et al. On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions , 2011, 1108.6136.
[8] T. Ozawa,et al. Remarks on some dispersive estimates , 2011 .
[9] Herbert Koch,et al. Well-posedness and scattering for the KP-II equation in a critical space , 2007, 0708.2011.
[10] T. Tao,et al. Sharp well-posedness and ill-posedness results for a quadratic non-linear Schr , 2005, math/0508210.
[11] S. Klainerman,et al. Bilinear space-time estimates for homogeneous wave equations , 2000 .
[12] N. Hayashi,et al. Scattering theory for Hartree type equations , 1987 .