Towards numerical simulation of nonhomogeneous thin-film silicon solar cells

We have developed an algorithm for the numerical simulation of the electrical and optical properties of a thin-film silicon solar cell. The intrinsic layer in the p-i-n solar cell is nonhomogeneous in the thickness direction. This nonhomogeneity is to be engineered via variations in the composition of the amorphous silicon. A layer of a transparent conducting oxide is welded to the p layer and the n layer is backed by a periodically corrugated metallic back reflector. The nonhomogeneous intrinsic layer may trap the incident light better than a homogeneous layer and increase the generation rate of electron-hole pairs. The periodically corrugated metallic back reflector can excite surface plasmon-polariton waves as well as waveguide modes. The generation rate of electron-hole pairs is computed using the rigorous coupledwave approach and the drift-diffusion model is used for the computation of the current density-voltage characteristics of the solar cell.

[1]  A. Lakhtakia,et al.  Propagation of surface waves and waveguide modes guided by a dielectric slab inserted in a sculptured nematic thin film , 2011 .

[2]  R. Morf,et al.  Submicrometer gratings for solar energy applications. , 1995, Applied optics.

[3]  José M. Martínez-Duart,et al.  Commentary: Photovoltaics firmly moving to the terawatt scale , 2013 .

[4]  Ping Sheng,et al.  Wavelength-selective absorption enhancement in thin-film solar cells , 1983 .

[5]  Rajendra Singh Why silicon is and will remain the dominant photovoltaic material , 2009 .

[6]  Lynn Marie Anderson Harnessing Surface Plasmons For Solar Energy Conversion , 1983, Other Conferences.

[7]  J. Nelson The physics of solar cells , 2003 .

[8]  W Steckelmacher,et al.  Thin-film optical filters, 3rd Edition , 2002 .

[9]  Akhlesh Lakhtakia,et al.  Optical and electrical modeling of an amorphous-silicon tandem solar cell with nonhomogeneous intrinsic layers and a periodically corrugated back-reflector , 2013, Optics & Photonics - Solar Energy + Applications.

[10]  Akhlesh Lakhtakia,et al.  Grating-coupled excitation of multiple surface plasmon-polariton waves , 2011, 1105.5793.

[11]  E. Yu,et al.  Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles , 2005 .

[12]  C. Ballif,et al.  Excitation of guided-mode resonances in thin film silicon solar cells , 2011 .

[13]  A. Jüngel Transport Equations for Semiconductors , 2009 .

[14]  A. D. Vos,et al.  Detailed balance limit of the efficiency of tandem solar cells , 1980 .

[15]  R. C. Swanson,et al.  On Central-Difference and Upwind Schemes , 1992 .

[16]  Somnath Ghosh,et al.  Double-Layer Antireflection Coating of MgF2 SiNx for Crystalline Silicon Solar Cells , 2006 .

[17]  D. M. Mattox,et al.  The Foundations of Vacuum Coating Technology , 2003 .

[18]  W. Warta,et al.  Solar cell efficiency tables (version 43) , 2014 .

[19]  Stephen J. Fonash,et al.  太阳电池器件物理 = Solar cell device physics , 1982 .

[20]  Akhlesh Lakhtakia,et al.  Enhancement of light absorption efficiency of amorphous-silicon thin-film tandem solar cell due to multiple surface-plasmon-polariton waves in the near-infrared spectral regime* , 2013 .

[21]  P. Verlinden,et al.  The Surface Texturization of Solar-cells - a New Method Using V-grooves With Controllable Sidewall Angles , 1992 .

[22]  G. F. Alapatt,et al.  Making Solar Cells a Reality in Every Home: Opportunities and Challenges for Photovoltaic Device Design , 2013, IEEE Journal of the Electron Devices Society.

[23]  Akhlesh Lakhtakia,et al.  Excitation of multiple surface-plasmon-polariton waves guided by the periodically corrugated interface of a metal and a periodic multilayered isotropic dielectric material , 2012 .

[24]  Hideki Masuda,et al.  Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module. , 2011, Optics express.