Polytopic control invariant sets for differential inclusion systems: A viability theory approach

This paper presents a criterion to characterize control invariant polytopes for differential inclusion systems. The practice-oriented method, based on viability theory and convex analysis, can be applied to determine computational procedures to obtain families of control invariant polytopes. The criterion is based on a necessary and sufficient condition for viability to hold at any point on the boundary of a polytope.

[1]  T. Alamo,et al.  Convex invariant sets for discrete-time Lur'e systems , 2009, Autom..

[2]  Mireille E. Broucke,et al.  Viability Kernels for Nonlinear Control Systems Using Bang Controls , 2010, IEEE Transactions on Automatic Control.

[3]  Luca Benvenuti,et al.  Invariant polytopes of linear systems , 1998 .

[4]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[5]  J. Hennet,et al.  On invariant polyhedra of continuous-time linear systems , 1993, IEEE Trans. Autom. Control..

[6]  J. Aubin Set-valued analysis , 1990 .

[7]  J. Aubin A survey of viability theory , 1990 .

[8]  Tingshu Hu,et al.  Exact characterization of invariant ellipsoids for single input linear systems subject to actuator saturation , 2002, IEEE Trans. Autom. Control..

[9]  E. Gilbert,et al.  Theory and computation of disturbance invariant sets for discrete-time linear systems , 1998 .

[10]  Sophie Tarbouriech,et al.  Antiwindup design with guaranteed regions of stability: an LMI-based approach , 2005, IEEE Transactions on Automatic Control.

[11]  D. Bertsekas Infinite time reachability of state-space regions by using feedback control , 1972 .

[12]  B. Kouvaritakis,et al.  Nonlinear model predictive control with polytopic invariant sets , 2002 .

[13]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[14]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[15]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[16]  John O'Reilly,et al.  Optimisation of attraction domains of nonlinear MPC via LMI methods , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[17]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[18]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[19]  W. Marsden I and J , 2012 .

[20]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[21]  E. F. Camacho,et al.  On the computation of convex robust control invariant sets for nonlinear systems , 2010, Autom..