Coefficient inverse problem for a fractional diffusion equation

In this paper, we consider an initial/boundary value problem for a fractional diffusion equation in a bounded domain Ω: where is the Caputo derivative and 0 < α < 2, α ≠ 1. We discuss an inverse problem of determining spatial coefficient p(x), x ∈ Ω and/or order α of the fractional derivative by data u|ω × (0, T), where ω⊂Ω is a sub-domain. Our main result is the uniqueness under conditions where the initial value is positive and ω is a neighbourhood of ∂Ω. The proof is done by transforming the solution u to the solution of the wave equation.

[1]  Xiang Xu,et al.  Carleman estimate for a fractional diffusion equation with half order and application , 2011 .

[2]  Ying Zhang,et al.  Inverse source problem for a fractional diffusion equation , 2011 .

[3]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[4]  Yakar Kannai,et al.  Off diagonal short time asymptotics for fundamental solution of diffusion equation , 1977 .

[5]  Masahiro Yamamoto,et al.  Carleman estimate with second large parameter for second order hyperbolic operators in a Riemannian manifold and applications in thermoelasticity cases , 2012 .

[6]  Emilia Bazhlekova,et al.  Fractional evolution equations in Banach spaces , 2001 .

[7]  Yury Luchko,et al.  Maximum principle for the generalized time-fractional diffusion equation , 2009 .

[8]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[9]  V. Isakov Appendix -- Function Spaces , 2017 .

[10]  Michael V. Klibanov,et al.  Carleman estimates for coefficient inverse problems and numerical applications , 2004 .

[11]  Michael V. Klibanov,et al.  Inverse Problems and Carleman Estimates , 1992 .

[12]  V. Zvyagin,et al.  Attractors of equations of non-Newtonian fluid dynamics , 2014 .

[13]  Masahiro Yamamoto,et al.  Carleman estimates for parabolic equations and applications , 2009 .

[14]  Masahiro Yamamoto,et al.  Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation , 2006 .

[15]  D. S. Ivaschenko,et al.  Numerical methods for solving inverse problems for time fractional diffusion equation with variable coefficient , 2009 .

[16]  Masahiro Yamamoto,et al.  GLOBAL UNIQUENESS AND STABILITY IN DETERMINING COEFFICIENTS OF WAVE EQUATIONS , 2001 .

[17]  I. Podlubny Fractional differential equations , 1998 .

[18]  H. Fattorini,et al.  Ordinary differential equations in linear topological space. II. , 1969 .

[19]  J. Dettman,et al.  Related problems in partial differential equations , 1968 .

[20]  Yury F. Luchko Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation , 2010, Comput. Math. Appl..

[21]  Jin Cheng,et al.  Unique continuation property for the anomalous diffusion and its application , 2013 .

[22]  Masahiro Yamamoto,et al.  Determination of a coefficient in an acoustic equation with a single measurement , 2003 .

[23]  Masahiro Yamamoto,et al.  Global Lipschitz stability in an inverse hyperbolic problem by interior observations , 2001 .

[24]  Luc Miller The Control Transmutation Method and the Cost of Fast Controls , 2006, SIAM J. Control. Optim..

[25]  Masahiro Yamamoto,et al.  Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation , 2009 .

[26]  Masahiro Yamamoto,et al.  Inverse source problem with a finaloverdetermination for a fractional diffusionequation , 2011 .

[27]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[28]  Ying Zhang,et al.  Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate , 2012 .

[29]  A. Bondarenko,et al.  Generalized Sommerfeld problem for time fractional diffusion equation: analytical and numerical approach , 2009 .

[30]  M. M. Lavrentʹev,et al.  Ill-Posed Problems of Mathematical Physics and Analysis , 1986 .

[31]  Masahiro Yamamoto,et al.  Lipschitz stability in inverse parabolic problems by the Carleman estimate , 1998 .