UNE APPROCHE DE CLASSIFICATION DES CONTRACTIONS UTERINES BASEE SUR LA THEORIE DES ONDELETTES ET LA STATISTIQUE

The purpose of this study is to classify the uterine contractions in the electromyography (EMG) signal. As the frequency content of the contraction changes from one woman to another and during pregnancy, wavelet decomposition is used to extract the parameters of each contraction and then an unsupervised statistical classification method based on Fisher test is used to classify the events. A principal component analysis projection is then used to evidence the groups resulting from this classification. Results show that uterine contractions may be classified into independent groups according to their frequency content, and in terms of pregnancy.

[1]  G. MallatS. A Theory for Multiresolution Signal Decomposition , 1989 .

[2]  M. Khalil,et al.  An unsupervised classification method of uterine electromyography signals using wavelet decomposition , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[3]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Jean-Christophe Pesquet,et al.  Multiresolution analysis of a class of nonstationary processes , 1995, IEEE Trans. Inf. Theory.

[5]  M. Mclean,et al.  Prediction and early diagnosis of preterm labor: a critical review. , 1993, Obstetrical & gynecological survey.

[6]  Stéphane Bounan,et al.  Menace d'accouchement prématuré , 2006 .

[7]  Catherine Marque,et al.  Uterine EHG Processing for Obstetrical Monitorng , 1986, IEEE Transactions on Biomedical Engineering.

[8]  C. Li,et al.  Detection of ECG characteristic points using wavelet transforms. , 1995, IEEE transactions on bio-medical engineering.

[9]  Y. Robert,et al.  Collège National des Gynécologues et Obstétriciens Français , 2008 .

[10]  Mohamad Khalil Une approche de la détection et de la classification dans les signaux non stationnaires : application à l'EGM uterin , 1999 .

[11]  Bellanger,et al.  6 - Détection temps-échelle d'évènements paroxystiques intercritiques en électroencéphalogramme , 1995 .

[12]  C. Marque,et al.  Unsupervised Classification in Uterine Electromyography Signal: Toward The Detection of Preterm Birth , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[13]  E. Menthonnex Menace d'accouchement prématuré , 2007 .

[14]  Cuiwei Li,et al.  Detection of ECG characteristic points using wavelet transforms , 1995, IEEE Transactions on Biomedical Engineering.