Analytic methods for field induced tunneling in quantum wells with arbitrary potential profiles

Electric field induced tunneling is studied in three different types of quantum wells by solving time-independent effective mass equation in analytic methods based on three different Airy function approaches. Comparison of different Airy function methods indicates that they are identical and connected to each other by the Breit-Wigner formula.

[1]  B. K. Panda,et al.  Electric field effect on the diffusion modified AlGaAs/GaAs single quantum well , 1996 .

[2]  E. Austin,et al.  Electronic structure of an isolated GaAs-GaAlAs quantum well in a strong electric field. , 1985, Physical review. B, Condensed matter.

[3]  G. Bastard,et al.  Tunnelling and relaxation in semiconductor double quantum wells , 1997 .

[4]  Rolf Landauer,et al.  Barrier interaction time in tunneling , 1994 .

[5]  L. L. Chang,et al.  Interdiffusion between GaAs and AlAs , 1976 .

[6]  T. Holz,et al.  The Quantum Well in an Electric Field A Density of States Approach , 1989 .

[7]  D. C. Hutchings,et al.  Transfer matrix approach to the analysis of an arbitrary quantum well structure in an electric field , 1989 .

[8]  A. Messiah Quantum Mechanics , 1961 .

[9]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[10]  S. T. Eng,et al.  Solving the Schrodinger equation in arbitrary quantum-well potential profiles using the transfer matrix method , 1990 .

[11]  V. E. Wood Table errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables (Nat. Bur. Standards, Washington, D.C., 1964) edited by M. Abramowitz and I. A. Stegun , 1969 .

[12]  P. Harrison,et al.  Quantum wells, wires, and dots , 2000 .

[13]  Shun Lien Chuang,et al.  Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field , 1987 .

[14]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[15]  M. Koshiba,et al.  Finite-element analysis of quantum wells of arbitrary semiconductors with arbitrary potential profiles , 1989 .

[16]  B. K. Panda,et al.  Quantum confined stark effect and optical absorption in AlxGa1−xAs/GaAs/AlxGa1−xAs , 1996 .

[17]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[18]  C. B. Duke,et al.  Space-Charge Effects on Electron Tunneling , 1966 .

[19]  R. L. Gallawa,et al.  Mean lifetime calculations of quantum well structures: a rigorous analysis , 1990 .

[20]  W. Gillin,et al.  Interdiffusion: A probe of vacancy diffusion in III-V materials , 1997 .

[21]  Sánchez-Dehesa,et al.  Electronic structure of a GaAs quantum well in an electric field. , 1986, Physical review. B, Condensed matter.

[22]  Tuviah E. Schlesinger,et al.  Determination of the interdiffusion of Al and Ga in undoped (Al,Ga)As/GaAs quantum wells , 1986 .

[23]  Norifumi Yamada,et al.  Speakable and Unspeakable in the Tunneling Time Problem , 1999 .

[24]  Chuang,et al.  Exact calculations of quasibound states of an isolated quantum well with uniform electric field: Quantum-well Stark resonance. , 1986, Physical review. B, Condensed matter.

[25]  B. K. Panda,et al.  Application of Fourier series methods for studying tunnelling of electrons out of quantum wells in an electric field , 1999 .

[26]  Quantum confined Stark shift in arbitrarily shaped single quantum wells by Fourier series method , 1996 .

[27]  Krishna Thyagarajan,et al.  A novel numerical technique for solving the one-dimensional Schroedinger equation using matrix approach-application to quantum well structures , 1988 .