Predicting Patient State-of-Health using Sliding Window and Recurrent Classifiers

Bedside monitors in Intensive Care Units (ICUs) frequently sound incorrectly, slowing response times and desensitising nurses to alarms (Chambrin, 2001), causing true alarms to be missed (Hug et al., 2011). We compare sliding window predictors with recurrent predictors to classify patient state-of-health from ICU multivariate time series; we report slightly improved performance for the RNN for three out of four targets.

[1]  Pascal Vincent,et al.  Visualizing Higher-Layer Features of a Deep Network , 2009 .

[2]  John A. Quinn,et al.  Factorial Switching Linear Dynamical Systems Applied to Physiological Condition Monitoring , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[4]  Richard Simon,et al.  Bias in error estimation when using cross-validation for model selection , 2006, BMC Bioinformatics.

[5]  Christopher K. I. Williams,et al.  Discriminative Switching Linear Dynamical Systems applied to Physiological Condition Monitoring , 2015, UAI.

[6]  Yoshua Bengio,et al.  Overcoming the Curse of Sentence Length for Neural Machine Translation using Automatic Segmentation , 2014, SSST@EMNLP.

[7]  Charles Elkan,et al.  Learning to Diagnose with LSTM Recurrent Neural Networks , 2015, ICLR.

[8]  Yan Liu,et al.  Recurrent Neural Networks for Multivariate Time Series with Missing Values , 2016, Scientific Reports.

[9]  Geoffrey E. Hinton,et al.  A Simple Way to Initialize Recurrent Networks of Rectified Linear Units , 2015, ArXiv.

[10]  Ian Piper,et al.  Detecting artifactual events in vital signs monitoring data , 2016 .

[11]  Roland Fried,et al.  The crying wolf: still crying? , 2009, Anesthesia and analgesia.

[12]  A. Reisner,et al.  Clinician blood pressure documentation of stable intensive care patients: An intelligent archiving agent has a higher association with future hypotension , 2011, Critical care medicine.

[13]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[14]  Jasper Snoek,et al.  Input Warping for Bayesian Optimization of Non-Stationary Functions , 2014, ICML.

[15]  Wojciech Zaremba,et al.  Recurrent Neural Network Regularization , 2014, ArXiv.

[16]  S. Lawless Crying wolf: False alarms in a pediatric intensive care unit , 1994, Critical care medicine.

[17]  Jasper Snoek,et al.  Bayesian Optimization with Unknown Constraints , 2014, UAI.

[18]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[19]  Roland Memisevic,et al.  Regularizing RNNs by Stabilizing Activations , 2015, ICLR.

[20]  M. Chambrin Alarms in the intensive care unit: how can the number of false alarms be reduced? , 2001, Critical care.

[21]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[22]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[23]  Lars Kai Hansen,et al.  Visualization of neural networks using saliency maps , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[24]  Alex Graves,et al.  Generating Sequences With Recurrent Neural Networks , 2013, ArXiv.

[25]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.