Stained images of Brodmann's area 45 in the left and right hemispheres of a human brain. Sections were stained using a modified Gallyas stain for Nissl

The human brain shows marked gross anatomical and microstructural asymmetries that are presumably related to lateralized motor and cognitive functions. This chapter generally summarizes the extant data on gross morphological asymmetries in human and nonhuman mammal brains. In addition, the evidence of microstructural asymmetries, such as gray-level index, minicolumn width, and cellular organization, are presented. Although there are few studies of microstructrual asymmetries in nonhuman primates, it is argued that such studies are important for validating morphological asymmetries as well as for understanding the cellular basis for hemispheric specialization in primates,

[1]  G. Goldenberg,et al.  Neuropsychology and behavioral neurology , 2008 .

[2]  Katrin Amunts,et al.  Left-Right Asymmetry in Volume and Number of Neurons in Adult Broca's Area , 2006, Cortex.

[3]  Anne L. Foundas,et al.  Variability in perisylvian brain anatomy in healthy adults , 2006, Brain and Language.

[4]  C. Sherwood,et al.  Primary motor cortex asymmetry is correlated with handedness in capuchin monkeys (Cebus apella). , 2005, Behavioral Neuroscience.

[5]  K. Semendeferi,et al.  Neural connectivity and cortical substrates of cognition in hominoids. , 2005, Journal of human evolution.

[6]  C. Sherwood,et al.  Is humanlike cytoarchitectural asymmetry present in another species with complex social vocalization? A stereologic analysis of mustached bat auditory cortex , 2005, Brain Research.

[7]  Eva Irle,et al.  Reduced size and abnormal asymmetry of parietal cortex in women with borderline personality disorder , 2005, Biological Psychiatry.

[8]  Derek K. Jones,et al.  Perisylvian language networks of the human brain , 2005, Annals of neurology.

[9]  A. Schleicher,et al.  Transmitter receptors and functional anatomy of the cerebral cortex , 2004, Journal of anatomy.

[10]  William D Hopkins,et al.  Handedness in chimpanzees (Pan troglodytes) is associated with asymmetries of the primary motor cortex but not with homologous language areas. , 2004, Behavioral neuroscience.

[11]  F. Aboitiz,et al.  AChE-rich magnopyramidal neurons have a left–right size asymmetry in Broca's area , 2004, Brain Research.

[12]  E. Eichler,et al.  Regional patterns of gene expression in human and chimpanzee brains. , 2004, Genome research.

[13]  K. Rockland,et al.  Some thoughts on cortical minicolumns , 2004, Experimental Brain Research.

[14]  Wenbo Xu,et al.  Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  T. Crow Cerebral asymmetry and the lateralization of language: core deficits in schizophrenia as pointers to the gene , 2004 .

[16]  Godfrey D Pearlson,et al.  Morphometric assessment of the heteromodal association cortex in schizophrenia. , 2004, The American journal of psychiatry.

[17]  M. Mishkin,et al.  Species-specific calls evoke asymmetric activity in the monkey's temporal poles , 2004, Nature.

[18]  Matthew A. Zapala,et al.  Elevated gene expression levels distinguish human from non-human primate brains , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Katrin Amunts,et al.  Broca's region: Cytoarchitectonic asymmetry and developmental changes , 2003, The Journal of comparative neurology.

[20]  Hanna Damasio,et al.  A morphometric analysis of auditory brain regions in congenitally deaf adults , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Galuske,et al.  Hemispheric asymmetries in cerebral cortical networks , 2003, Trends in Neurosciences.

[22]  L. Krubitzer,et al.  Nature versus nurture revisited: an old idea with a new twist , 2003, Progress in Neurobiology.

[23]  Patrick R Hof,et al.  Variability of Broca's area homologue in African great apes: implications for language evolution. , 2003, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[24]  A. Schleicher,et al.  Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry , 2002, European Neuropsychopharmacology.

[25]  K. Rockland,et al.  The pyramidal cell of the sensorimotor cortex of the macaque monkey: phenotypic variation. , 2002, Cerebral cortex.

[26]  D. Buxhoeveden,et al.  The minicolumn hypothesis in neuroscience. , 2002, Brain : a journal of neurology.

[27]  James K Rilling,et al.  A quantitative morphometric comparative analysis of the primate temporal lobe. , 2002, Journal of human evolution.

[28]  S. Pääbo,et al.  Intra- and Interspecific Variation in Primate Gene Expression Patterns , 2002, Science.

[29]  M. Hausberger,et al.  Song perception in the European starling: hemispheric specialisation and individual variations. , 2002, Comptes rendus biologies.

[30]  W. Hopkins,et al.  Asymmetric Broca's area in great apes , 2001, Nature.

[31]  M. Beauregard,et al.  Neural Correlates of Conscious Self-Regulation of Emotion , 2001, The Journal of Neuroscience.

[32]  Functional Magnetic Resonance Imaging of Eye Dominance at 4 Tesla , 2001, Ophthalmic Research.

[33]  G. Elston,et al.  The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey , 2001, The Journal of Neuroscience.

[34]  Alan C. Evans,et al.  Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans. , 2001, Cerebral cortex.

[35]  A. Damasio,et al.  A role for left temporal pole in the retrieval of words for unique entities , 2001, Human brain mapping.

[36]  James B. Rowe,et al.  Working Memory for Location and Time: Activity in Prefrontal Area 46 Relates to Selection Rather than Maintenance in Memory , 2001, NeuroImage.

[37]  A. Toga,et al.  Mapping cortical asymmetry and complexity patterns in normal children , 2001, Psychiatry Research: Neuroimaging.

[38]  D. Buxhoeveden,et al.  Lateralization of Minicolumns in Human Planum temporale Is Absent in Nonhuman Primate Cortex , 2001, Brain, Behavior and Evolution.

[39]  J. Jacobs,et al.  Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. , 2001, Cerebral cortex.

[40]  P. Stoerig,et al.  Neural correlates of religious experience , 2001, The European journal of neuroscience.

[41]  D. Weinberger,et al.  Morphology of the Frontal Operculum: A Volumetric Magnetic Resonance Imaging Study of the Pars Triangularis , 2001, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[42]  Patrick R. Hof,et al.  Evolutionary Anatomy of the Primate Cerebral Cortex: Language areas of the hominoid brain: a dynamic communicative shift on the upper east side planum , 2001 .

[43]  Laure Zago,et al.  Mental calculation in a prodigy is sustained by right prefrontal and medial temporal areas , 2001, Nature Neuroscience.

[44]  M. Annett,et al.  Predicting Combinations of Left and Right Asymmetries , 2000, Cortex.

[45]  J. Raz,et al.  Contralateral monocular dominance in anterior visual cortex confirmed by functional magnetic resonance imaging. , 2000, American journal of ophthalmology.

[46]  D. Geschwind,et al.  Mice, microarrays, and the genetic diversity of the brain. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  W. Singer,et al.  Interhemispheric asymmetries of the modular structure in human temporal cortex. , 2000, Science.

[48]  G. Elston Pyramidal Cells of the Frontal Lobe: All the More Spinous to Think With , 2000, The Journal of Neuroscience.

[49]  Leah Krubitzer,et al.  Arealization of the Neocortex in Mammals: Genetic and Epigenetic Contributions to the Phenotype , 2000, Brain, Behavior and Evolution.

[50]  Jon H. Kaas,et al.  Why is Brain Size so Important:Design Problems and Solutions as Neocortex Gets Biggeror Smaller , 2000 .

[51]  K. Amunts,et al.  Interhemispheric asymmetry of the human motor cortex related to handedness and gender , 2000, Neuropsychologia.

[52]  R. McCarley,et al.  Abnormal angular gyrus asymmetry in schizophrenia. , 2000, The American journal of psychiatry.

[53]  B. Anderson,et al.  Anatomic asymmetries of the posterior superior temporal lobes: a postmortem study. , 1999, Neuropsychiatry, neuropsychology, and behavioral neurology.

[54]  A. Dagher,et al.  Mapping the network for planning: a correlational PET activation study with the Tower of London task. , 1999, Brain : a journal of neurology.

[55]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[56]  Alan C. Evans,et al.  Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis , 1999, The European journal of neuroscience.

[57]  A M Galaburda,et al.  Neuronal asymmetries in primary visual cortex of dyslexic and nondyslexic brains , 1999, Annals of neurology.

[58]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[59]  D. Weinberger,et al.  Hemispheric and sex-linked differences in Sylvian fissure morphology: a quantitative approach using volumetric magnetic resonance imaging. , 1999, Neuropsychiatry, neuropsychology, and behavioral neurology.

[60]  Wim E Crusio,et al.  Sexual selection, timing and the descent of man : A theory of the genetic origins of language. Commentaries. Author's reply , 1998 .

[61]  D. Weinberger,et al.  MRI Asymmetries of Broca's Area: The Pars Triangularis and Pars Opercularis , 1998, Brain and Language.

[62]  J. Rilling,et al.  Planum temporale asymmetries in great apes as revealed by magnetic resonance imaging (MRI) , 1998, Neuroreport.

[63]  N Suga,et al.  Syntax processing by auditory cortical neurons in the FM-FM area of the mustached bat Pteronotus parnellii. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[64]  G. Ehret,et al.  The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation , 1997, Journal of Comparative Physiology A.

[65]  Karl Zilles,et al.  Postnatal development of interhemispheric asymmetry in the cytoarchitecture of human area 4 , 1997, Anatomy and Embryology.

[66]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[67]  D. Purves,et al.  Correlated Size Variations in Human Visual Cortex, Lateral Geniculate Nucleus, and Optic Tract , 1997, The Journal of Neuroscience.

[68]  W H Theodore,et al.  A direct comparison of PET activation and electrocortical stimulation mapping for language localization , 1997, Neurology.

[69]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[70]  L. White,et al.  Structure of the human sensorimotor system. I: Morphology and cytoarchitecture of the central sulcus. , 1997, Cerebral cortex.

[71]  L. White,et al.  Structure of the human sensorimotor system. II: Lateral symmetry. , 1997, Cerebral cortex.

[72]  A. Schleicher,et al.  Motor cortex and hand motor skills: Structural compliance in the human brain , 1997, Human brain mapping.

[73]  A. Schleicher,et al.  Structural Asymmetries in the Human Forebrain and the Forebrain of Non-human Primates and Rats , 1996, Neuroscience & Biobehavioral Reviews.

[74]  G. Rosen,et al.  Cellular, Morphometric, Ontogenetic and Connectional Substrates of Anatomical Asymmetry , 1996, Neuroscience & Biobehavioral Reviews.

[75]  A. Schleicher,et al.  Asymmetry in the Human Motor Cortex and Handedness , 1996, NeuroImage.

[76]  T. L. Hayes,et al.  Magnopyramidal neurons in the anterior motor speech region. Dendritic features and interhemispheric comparisons. , 1996, Archives of neurology.

[77]  B. Anderson,et al.  Age and hemisphere effects on dendritic structure. , 1996, Brain : a journal of neurology.

[78]  Alan C. Evans,et al.  Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. , 1996, Cerebral cortex.

[79]  N Suga,et al.  Facilitative responses to species-specific calls in cortical FM-FM neurons of the mustached bat. , 1996, Neuroreport.

[80]  P. Rakić,et al.  Numerical relationship between neurons in the lateral geniculate nucleus and primary visual cortex in macaque monkeys , 1996, Visual Neuroscience.

[81]  M. Gazzaniga,et al.  Acetylcholinesterase staining in human auditory and language cortices: regional variation of structural features. , 1996, Cerebral cortex.

[82]  M. Merzenich,et al.  Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  P. Rakic Radial versus tangential migration of neuronal clones in the developing cerebral cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Mark Hallett,et al.  The role of reading activity on the modulation of motor cortical outputs to the reading hand in braille readers , 1995, Annals of neurology.

[85]  Leslie G. Ungerleider,et al.  Functional MRI evidence for adult motor cortex plasticity during motor skill learning , 1995, Nature.

[86]  T. L. Hayes,et al.  Anatomical Specialization of the Anterior Motor Speech Area: Hemispheric Differences in Magnopyramidal Neurons , 1995, Brain and Language.

[87]  J. A. Frost,et al.  Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging , 1995, Neurology.

[88]  N Suga,et al.  Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats. , 1994, The Journal of the Acoustical Society of America.

[89]  Patrice Y. Simard,et al.  Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. , 1994, Cerebral cortex.

[90]  G. Schlaug,et al.  Asymmetry of the planum parietale. , 1994, Neuroreport.

[91]  M. Hauser,et al.  Left hemisphere dominance for processing vocalizations in adult, but not infant, rhesus monkeys: field experiments. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[92]  G. D. Rosen,et al.  Neuronal subtypes and anatomic asymmetry: changes in neuronal number and cell-packing density , 1993, Neuroscience.

[93]  A. Scheibel,et al.  A quantitative dendritic analysis of wernicke's area in humans. I. Lifespan changes , 1993, The Journal of comparative neurology.

[94]  A. Scheibel,et al.  A quantitative dendritic analysis of wernicke's area in humans. II. Gender, hemispheric, and environmental factors , 1993, The Journal of comparative neurology.

[95]  R. Douglas,et al.  Exploring cortical microcircuits: a combined anatomical, physiological, and computational approach , 1992 .

[96]  G. Ojemann Cortical organization of language , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[97]  A. Peters,et al.  Organization of pyramidal neurons in area 17 of monkey visual cortex , 1991, The Journal of comparative neurology.

[98]  P. T. Fox,et al.  Positron emission tomographic studies of the cortical anatomy of single-word processing , 1988, Nature.

[99]  A. Peters,et al.  The neuronal composition of area 17 of rat visual cortex. IV. The organization of pyramidal cells , 1987, The Journal of comparative neurology.

[100]  G. Ehret Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls , 1987, Nature.

[101]  G. D. Rosen,et al.  Histological Asymmetry in the Primary Visual Cortex of the Rat: Implications for Mechanisms of Cerebral Asymmetry , 1986, Cortex.

[102]  G. Murphy,et al.  Volumetric asymmetry in the human striate cortex , 1985, Experimental Neurology.

[103]  I. Fried,et al.  Dendritic organization of the anterior speech area , 1985, Experimental Neurology.

[104]  H. Heffner,et al.  Temporal lobe lesions and perception of species-specific vocalizations by macaques. , 1984, Science.

[105]  P. Marler,et al.  Neural lateralization of vocalizations by Japanese macaques: communicative significance is more important than acoustic structure. , 1984, Behavioral Neuroscience.

[106]  R. Holloway,,et al.  Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. , 1982, American journal of physical anthropology.

[107]  P. Perrone,et al.  Right-left asymmetry in anterior speech region. , 1982, Archives of neurology.

[108]  H. Seldon Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions , 1981, Brain Research.

[109]  A. Albanese,et al.  Choline acetyltransferase (ChAT) activity differs in right and left human temporal lobes. , 1981, Neurology.

[110]  A. Galaburda,et al.  Cytoarchitectonic organization of the human auditory cortex , 1980, The Journal of comparative neurology.

[111]  N. Geschwind,et al.  Human Brain: Cytoarchitectonic Left-Right Asymmetries in the Temporal Speech Region , 1978 .

[112]  D. Moody,et al.  Neural lateralization of species-specific vocalizations by Japanese macaques (Macaca fuscata). , 1978, Science.

[113]  J A Wada,et al.  Cerebral hemispheric asymmetry in humans. Cortical speech zones in 100 adults and 100 infant brains. , 1975, Archives of neurology.

[114]  T. Rasmussen,et al.  INTRACAROTID SODIUM AMYTAL FOR THE LATERALIZATION OF CEREBRAL SPEECH DOMINANCE; OBSERVATIONS IN 123 PATIENTS. , 1964, Journal of neurosurgery.