A new efficient numerical integration scheme for highly oscillatory electric circuits

This paper presents a new numerical integration scheme for second order ordinary differential equations which can integrate highly oscillating electric circuits with high efficiency. This is shown by numerical results. The discretization scheme is based on the principle of coherence proposed by Hersch which will be described shortly. The analysis reveals important properties of the new method such as consistency. Some problems (e. g. cancellation) make an efficient implementation difficult, solutions are given.

[1]  Tom Lyche,et al.  Chebyshevian multistep methods for ordinary differential equations , 1972 .

[2]  J. Hersch Eine Kohärenzforderung für Differenzengleichungen , 1974 .

[3]  H. De Meyer,et al.  A modified numerov integration method for second order periodic initial-value problems , 1990 .

[4]  Ute Feldmann,et al.  Algorithms for modern circuit simulation , 1992 .

[5]  G. Denk A new numerical method for the integration of highly oscillatory second-order ordinary differential equations , 1993 .

[6]  T. E. Simos,et al.  Numerical integration of the one-dimensional Schro¨dinger equations , 1990 .

[7]  W Kampowsky,et al.  CLASSIFICATION AND NUMERICAL SIMULATION OF ELECTRIC CIRCUITS , 1992 .

[8]  P. Deuflhard A study of extrapolation methods based on multistep schemes without parasitic solutions , 1979 .

[9]  L. Collatz,et al.  Numerische Methoden bei Differentialgleichungen und mit funktionalanalytischen Hilfsmitteln , 1974 .

[10]  Joseph Hersch Contribution à la méthode des équations aux différences , 1958 .

[11]  M H Chawla,et al.  A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .

[12]  P. Rentrop,et al.  Multirate ROW methods and latency of electric circuits , 1993 .

[13]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[14]  D. G. Bettis,et al.  Stabilization of Cowell's method , 1969 .

[15]  Ben P. Sommeijer,et al.  Diagonally implicit Runge-Kutta-Nystrm methods for oscillatory problems , 1989 .