A new efficient numerical integration scheme for highly oscillatory electric circuits
暂无分享,去创建一个
[1] Tom Lyche,et al. Chebyshevian multistep methods for ordinary differential equations , 1972 .
[2] J. Hersch. Eine Kohärenzforderung für Differenzengleichungen , 1974 .
[3] H. De Meyer,et al. A modified numerov integration method for second order periodic initial-value problems , 1990 .
[4] Ute Feldmann,et al. Algorithms for modern circuit simulation , 1992 .
[5] G. Denk. A new numerical method for the integration of highly oscillatory second-order ordinary differential equations , 1993 .
[6] T. E. Simos,et al. Numerical integration of the one-dimensional Schro¨dinger equations , 1990 .
[7] W Kampowsky,et al. CLASSIFICATION AND NUMERICAL SIMULATION OF ELECTRIC CIRCUITS , 1992 .
[8] P. Deuflhard. A study of extrapolation methods based on multistep schemes without parasitic solutions , 1979 .
[9] L. Collatz,et al. Numerische Methoden bei Differentialgleichungen und mit funktionalanalytischen Hilfsmitteln , 1974 .
[10] Joseph Hersch. Contribution à la méthode des équations aux différences , 1958 .
[11] M H Chawla,et al. A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .
[12] P. Rentrop,et al. Multirate ROW methods and latency of electric circuits , 1993 .
[13] Ben P. Sommeijer,et al. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .
[14] D. G. Bettis,et al. Stabilization of Cowell's method , 1969 .
[15] Ben P. Sommeijer,et al. Diagonally implicit Runge-Kutta-Nystrm methods for oscillatory problems , 1989 .