Measurements of Turbulent Energy Dissipation Rate with a CW Doppler Lidar in the Atmospheric Boundary Layer

Abstract The results of a theoretical and experimental study of the feasibility of the turbulent energy dissipation rate ϵT measurements with a continuous wave (CW) CO2 Doppler lidar in the atmospheric boundary layer are presented. Three methods of probing ϵT are considered: 1) Doppler spectrum width, 2) the temporal spectrum (temporal structure function) of wind velocity measured by the Doppler lidar, and 3) spatial structure function. In these methods, information on the dissipation rate is extracted by means of analysis of the corresponding statistical characteristics of wind velocity in the inertial subrange of the turbulence, taking into account the spatial averaging of the measured wind velocity fluctuations over sounded volume. In the first and third methods, the spatial structure of the turbulence is analyzed directly. In the second method, to determine ϵT from the measured temporal characteristics, it is necessary to use a model for the spatiotemporal correlation function of wind velocity. As a r...

[1]  R. L. Schwiesow,et al.  An Airborne Laser Air Motion Sensing System. Part I: Concept and Preliminary Experiment , 1987 .

[2]  Keith Brewster,et al.  Comparison of Eddy Dissipation Rates from Spatial Spectra of Doppler Velocities and Doppler Spectrum Widths , 1986 .

[3]  J G Hawley,et al.  Coherent launch-site atmospheric wind sounder: theory and experiment. , 1993, Applied optics.

[4]  Sammy W. Henderson,et al.  Windshear, turbulence, and wake vortex characterization using pulsed solid state coherent lidar , 1995, Defense, Security, and Sensing.

[5]  V A Banakh,et al.  Representativeness of wind measurements with a cw Doppler lidar in the atmospheric boundary layer. , 1995, Applied optics.

[6]  B. J. Rye Refractive-turbulence contribution to incoherent backscatter heterodyne lidar returns , 1981 .

[7]  D. Zrnic,et al.  Doppler Radar and Weather Observations , 1984 .

[8]  C. M. Sonnenschein,et al.  Signal-to-Noise Relationships for Coaxial Systems that Heterodyne Backscatter from the Atmosphere. , 1971, Applied optics.

[9]  T R Lawrence,et al.  Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar. , 1984, Applied optics.

[10]  David J. Wilson,et al.  A Laser Velocimeter for Remote Wind Sensing , 1972 .

[11]  Mei Xu,et al.  Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data , 1992 .

[12]  Dusan Zrnic,et al.  Estimation of Spectral Moments for Weather Echoes , 1979, IEEE Transactions on Geoscience Electronics.

[13]  R. Keeler,et al.  Characteristics of coherent lidar returns from calibration targets and aerosols. , 1981, Applied optics.

[14]  John L. Lumley,et al.  The structure of atmospheric turbulence , 1964 .

[15]  William B. Grant,et al.  Atmospheric Velocity Spectral Width Measurements Using the Statistical Distribution of Pulsed CO2 Lidar Return Signal Intensities , 1989 .

[16]  Sammy W. Henderson,et al.  Performance of a 2-µm Coherent Doppler Lidar for Wind Measurements , 1994 .

[17]  N. K. Vinnichenko,et al.  Turbulence in the Free Atmosphere , 1972 .

[18]  M. Bertolotti,et al.  Statistical Properties of Scattered Light , 1975 .

[19]  R. L. Schwiesow,et al.  Remote Measurements of Boundary-Layer Wind Profiles Using a CW Doppler Lidar , 1984 .

[20]  Stephen A. Cohn,et al.  Radar Measurements of Turbulent Eddy Dissipation Rate in the Troposphere: A Comparison of Techniques , 1995 .