A pragmatic method to determine the composition-dependent interdiffusivities in ternary systems by using a single diffusion couple

A pragmatic method for determining the composition-dependent interdiffusivities in ternary systems by means of a single diffusion couple was developed and realized via a homemade code. Its reliability was further validated in a series of Co-based diffusion couples annealed at 1373 K by comparing with the results via the traditional Matano–Kirkaldy method. In addition, various diffusion properties were predicated, and comprehensively compared with the experimental data.

[1]  U. Kattner,et al.  Partition behavior of alloying elements and phase transformation temperatures in Co–Al–W-base quaternary systems , 2013 .

[2]  Yongho Sohn,et al.  A new analysis for the determination of ternary interdiffusion coefficients from a single diffusion couple , 1999 .

[3]  G. Wen,et al.  CSUTDCC1—A thermodynamic database for multicomponent cemented carbides , 2014 .

[4]  I. Steinbach,et al.  Phase-field model with finite interface dissipation: Extension to multi-component multi-phase alloys , 2012 .

[5]  R. Mévrel,et al.  A numerical inverse method for calculating the interdiffusion coefficients along a diffusion path in ternary systems , 2002 .

[6]  L. Höglund,et al.  DICTRA, a tool for simulation of diffusional transformations in alloys , 2000 .

[7]  J. Ågren,et al.  Models for numerical treatment of multicomponent diffusion in simple phases , 1992 .

[8]  Gregory B Olson,et al.  Materials genomics: From CALPHAD to flight , 2014 .

[9]  A. Paul,et al.  A pseudobinary approach to study interdiffusion and the Kirkendall effect in multicomponent systems , 2013 .

[10]  M. Dayananda An analysis of concentration profiles for fluxes, diffusion depths, and zero-flux planes in multicomponent diffusion , 1983 .

[11]  Kaiming Cheng,et al.  Analysis of the Cermak–Rothova method for determining the concentration dependence of ternary interdiffusion coefficients with a single diffusion couple , 2014 .

[12]  J. Ågren,et al.  CALPHAD, first and second generation – Birth of the materials genome , 2014 .

[13]  G. Wen,et al.  CSUDDCC1—A diffusion database for multicomponent cemented carbides , 2014 .

[14]  Honghui Xu,et al.  Ternary diffusion in Cu-rich fcc Cu-Al-Si alloys at 1073 K , 2013 .

[15]  Dingfei Zhang,et al.  Measurements for Cu and Si diffusivities in Al–Cu–Si alloys by diffusion couples , 2007 .

[16]  Jiří Čermák,et al.  Concentration dependence of ternary interdiffusion coefficients in Ni3Al/Ni3Al–X couples with X=Cr, Fe, Nb and Ti , 2003 .

[17]  J. R. Manning Cross terms in the thermodynamic diffusion equations for multicomponent alloys , 1970 .

[18]  R. Mévrel,et al.  Calculating the composition-dependent diffusivity matrix along a diffusion path in ternary systems: Application to β-(Ni, Pt)Al , 2003 .

[19]  L. Castleman,et al.  Ternary Diffusion. Solutions with Diffusion Coefficients Linearly Dependent on Concentrations , 1984 .

[20]  J. Lacombe,et al.  A Stable and Efficient Regression Approach for Determination of Coefficients in Linear Multicomponent Diffusion , 2012 .