The quest for a thermostable sucrose phosphorylase reveals sucrose 6′-phosphate phosphorylase as a novel specificity

[1]  W. Soetaert,et al.  Mapping the acceptor site of sucrose phosphorylase from Bifidobacterium adolescentis by alanine scanning , 2013 .

[2]  G. Vriend,et al.  Consensus engineering of sucrose phosphorylase: The outcome reflects the sequence input , 2013, Biotechnology and bioengineering.

[3]  V. Křen,et al.  Ionic liquids as cosolvents for glycosylation by sucrose phosphorylase: balancing acceptor solubility and enzyme stability , 2013 .

[4]  W. Soetaert,et al.  An Imprinted Cross-Linked Enzyme Aggregate (iCLEA) of Sucrose Phosphorylase: Combining Improved Stability with Altered Specificity , 2012, International journal of molecular sciences.

[5]  Wim Soetaert,et al.  Enzymatic glycosylation of small molecules: challenging substrates require tailored catalysts. , 2012, Chemistry.

[6]  Enrique Merino,et al.  ProOpDB: Prokaryotic Operon DataBase , 2011, Nucleic Acids Res..

[7]  Wim Soetaert,et al.  Increasing the thermostability of sucrose phosphorylase by a combination of sequence- and structure-based mutagenesis. , 2011, Protein engineering, design & selection : PEDS.

[8]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[9]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[10]  W. Soetaert,et al.  Operational stability of immobilized sucrose phosphorylase: Continuous production of α-glucose-1-phosphate at elevated temperatures , 2011 .

[11]  W. Soetaert,et al.  Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors. , 2011, Carbohydrate research.

[12]  W. Soetaert,et al.  A constitutive expression system for high-throughput screening , 2011 .

[13]  W. Soetaert,et al.  Enzymatic glycosyl transfer: mechanisms and applications , 2011 .

[14]  W. Soetaert,et al.  Sucrose phosphorylase as cross-linked enzyme aggregate: improved thermal stability for industrial applications. , 2010, Biotechnology journal.

[15]  W. Soetaert,et al.  Increasing the thermostability of sucrose phosphorylase by multipoint covalent immobilization. , 2010, Journal of biotechnology.

[16]  Victor Markowitz,et al.  Complete genome sequence of Meiothermus ruber type strain (21T) , 2010, Standards in genomic sciences.

[17]  Lynne A. Goodwin,et al.  Complete genome sequence of Meiothermus silvanus type strain (VI-R2T) , 2010, Standards in genomic sciences.

[18]  B. Nidetzky,et al.  Sucrose phosphorylase: a powerful transglucosylation catalyst for synthesis of α-D-glucosides as industrial fine chemicals , 2010 .

[19]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[20]  J Craig Venter,et al.  One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome , 2008, Proceedings of the National Academy of Sciences.

[21]  B. Nidetzky,et al.  A high-yielding biocatalytic process for the production of 2-O-(alpha-D-glucopyranosyl)-sn-glycerol, a natural osmolyte and useful moisturizing ingredient. , 2008, Angewandte Chemie.

[22]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[23]  Yosephine Gumulya,et al.  Improved PCR method for the creation of saturation mutagenesis libraries in directed evolution: application to difficult-to-amplify templates , 2008, Applied Microbiology and Biotechnology.

[24]  Irini Angelidaki,et al.  Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2 , 2008 .

[25]  F. Niesen,et al.  The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability , 2007, Nature Protocols.

[26]  B. Nidetzky,et al.  Dissecting differential binding of fructose and phosphate as leaving group/nucleophile of glucosyl transfer catalyzed by sucrose phosphorylase , 2007, FEBS letters.

[27]  H. Xiang,et al.  Molecular investigation of a novel thermostable glucan phosphorylase from Thermoanaerobacter tengcongensis , 2007 .

[28]  Nanfei Xu,et al.  Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. , 2007, Journal of plant physiology.

[29]  B. Nidetzky,et al.  Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of alpha-D-glucose 1-phosphate. , 2007, Journal of biotechnology.

[30]  Lei Wang,et al.  Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir , 2007, Proceedings of the National Academy of Sciences.

[31]  Bernard Henrissat,et al.  Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. , 2006, Protein engineering, design & selection : PEDS.

[32]  B. Nidetzky,et al.  Asp‐196 → Ala mutant of Leuconostoc mesenteroides sucrose phosphorylase exhibits altered stereochemical course and kinetic mechanism of glucosyl transfer to and from phosphate , 2006, FEBS letters.

[33]  隆 栗木,et al.  ランダム変異を用いたStreptococcus mutans 由来 Sucrose Phosphorylaseの耐熱性の向上 , 2006 .

[34]  B. A. van der Veen,et al.  Crystal structure of the Glu328Gln mutant of Neisseria polysaccharea amylosucrase in complex with sucrose and maltoheptaose , 2006 .

[35]  M. Saier,et al.  Comparative Genomic Analyses of the Bacterial Phosphotransferase System , 2005, Microbiology and Molecular Biology Reviews.

[36]  V. Eijsink,et al.  Directed evolution of enzyme stability. , 2005, Biomolecular engineering.

[37]  V. Abratt,et al.  Sucrose utilisation in bacteria: genetic organisation and regulation , 2005, Applied Microbiology and Biotechnology.

[38]  Jeffrey D. Gawronski,et al.  Microtiter assay for glutamine synthetase biosynthetic activity using inorganic phosphate detection. , 2004, Analytical biochemistry.

[39]  Hideki Harada,et al.  Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. , 2003, International journal of systematic and evolutionary microbiology.

[40]  K. Nealson,et al.  Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. , 2003, International journal of systematic and evolutionary microbiology.

[41]  S. Spring,et al.  Oceanithermus profundus gen. nov., sp. nov., a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent. , 2003, International journal of systematic and evolutionary microbiology.

[42]  D. Prieur,et al.  Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. , 2002, International journal of systematic and evolutionary microbiology.

[43]  Gert Vriend,et al.  Increasing the precision of comparative models with YASARA NOVA—a self‐parameterizing force field , 2002, Proteins.

[44]  M. Kurimoto,et al.  Gene Encoding a Trehalose Phosphorylase from Thermoanaerobacter brockii ATCC 35047 , 2002, Bioscience, biotechnology, and biochemistry.

[45]  R. Boom,et al.  Thermozymes and their applications , 2001, Applied biochemistry and biotechnology.

[46]  V. Planchot,et al.  Amylosucrase from Neisseria polysaccharea: novel catalytic properties , 2000, FEBS letters.

[47]  A. Illanes Stability of biocatalysts , 1999 .

[48]  C. Vieille,et al.  Thermozymes: Identifying molecular determinants of protein structural and functional stability , 1996 .

[49]  K. Nakamura,et al.  Purification and some properties of sucrose phosphorylase from Leuconostoc mesenteroides. , 1991, Agricultural and biological chemistry.

[50]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[51]  R. Silverstein,et al.  Purification and mechanism of action of sucrose phosphorylase. , 1967, The Journal of biological chemistry.

[52]  A. Glassman,et al.  Determination of glucose in the presence of sucrose using glucose oxidase; effect of pH on absorption spectrum of oxidized o-dianisidine. , 1962, Analytical biochemistry.

[53]  M. Doudoroff STUDIES ON THE PHOSPHOROLYSIS OF SUCROSE , 1943 .

[54]  Matt Nolan,et al.  Complete genome sequence of Meiothermus ruber type strain (21T) , 2010, Standards in genomic sciences.

[55]  Keehyoung Joo,et al.  Improving physical realism, stereochemistry, and side‐chain accuracy in homology modeling: Four approaches that performed well in CASP8 , 2009, Proteins.

[56]  T. Takaha,et al.  Enhancing the Thermal Stability of Sucrose Phosphorylase from Streptococcus mutans by Random Mutagenesis , 2006 .

[57]  Kuriki Takashi,et al.  ランダム変異を用いたStreptococcus mutans由来Sucrose Phosphorylaseの耐熱性の向上 , 2006 .

[58]  M. Kurimoto,et al.  Cloning and sequencing of kojibiose phosphorylase gene from Thermoanaerobacter brockii ATCC35047. , 2004, Journal of bioscience and bioengineering.

[59]  Y. Sako,et al.  Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. , 2003, International journal of systematic and evolutionary microbiology.

[60]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[61]  F. Rainey,et al.  Spirochaeta thermophila sp. nov., an Obligately Anaerobic, Polysaccharolytic, Extremely Thermophilic Bacterium , 1992 .

[62]  N. Saito The neighbor-joining method : A new method for reconstructing phylogenetic trees , 1987 .

[63]  W. Wooster,et al.  Crystal structure of , 2005 .