Mechanistic imperatives for the evolution of glutathione transferases.

Several significant advances in the understanding of the catalytic mechanisms, structures and evolution of glutathione transferases have occurred in the past year. These advances include new mechanistic information concerning the canonical soluble enzymes, the finding that the fosfomycin-specific enzyme, FosA, is a metalloglutathione transferase and a higher resolution projection structure of the microsomal enzyme.

[1]  Patricia C. Babbitt,et al.  Understanding Enzyme Superfamilies , 1997, The Journal of Biological Chemistry.

[2]  C. Welch,et al.  Human Class Mu Glutathione Transferases, in Particular Isoenzyme M2-2, Catalyze Detoxication of the Dopamine Metabolite Aminochrome* , 1997, The Journal of Biological Chemistry.

[3]  N. Vermeulen,et al.  4-Substituted 1-chloro-2-nitrobenzenes: structure-activity relationships and extension of the substrate model of rat glutathione S-transferase 4-4. , 1997, Chemical research in toxicology.

[4]  R. Armstrong,et al.  Mechanistic imperative for the evolution of a metalloglutathione transferase of the vicinal oxygen chelate superfamily. , 1998, Chemico-biological interactions.

[5]  G L Gilliland,et al.  Structure and function of the xenobiotic substrate-binding site and location of a potential non-substrate-binding site in a class pi glutathione S-transferase. , 1997, Biochemistry.

[6]  R. Huber,et al.  Cloning, sequencing, crystallization and X-ray structure of glutathione S-transferase-III from Zea mays var. mutin: a leading enzyme in detoxification of maize herbicides. , 1997, Journal of molecular biology.

[7]  J. Rossjohn,et al.  Multifunctional role of Tyr 108 in the catalytic mechanism of human glutathione transferase P1-1. Crystallographic and kinetic studies on the Y108F mutant enzyme. , 1997, Biochemistry.

[8]  R. Armstrong,et al.  Regiochemical and Stereochemical Course of the Reaction Catalyzed by the Fosfomycin Resistance Protein, FosA , 1998 .

[9]  L. Hansson,et al.  Mechanism-based phage display selection of active-site mutants of human glutathione transferase A1-1 catalyzing SNAr reactions. , 1997, Biochemistry.

[10]  P. Jemth,et al.  An evolutionary approach to the design of glutathione-linked enzymes. , 1998, Chemico-biological interactions.

[11]  R. Huber,et al.  Crystal structure of herbicide-detoxifying maize glutathione S-transferase-I in complex with lactoylglutathione: evidence for an induced-fit mechanism. , 1997, Journal of molecular biology.

[12]  S. Copley,et al.  Identification of a Covalent Intermediate between Glutathione and Cysteine13 Formed during Catalysis by Tetrachlorohydroquinone Dehalogenase , 1997 .

[13]  M. Parker,et al.  Catalytic Mechanism and Role of Hydroxyl Residues in the Active Site of Theta Class Glutathione S-Transferases , 1997, The Journal of Biological Chemistry.

[14]  J. Rossjohn,et al.  A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications. , 1998, Structure.

[15]  J Rossjohn,et al.  The three-dimensional structure of the human Pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate. , 1997, Biochemistry.

[16]  M. Coll,et al.  The Three-dimensional Structure of Cys-47-modified Mouse Liver Glutathione S-Transferase P1-1 , 1998, The Journal of Biological Chemistry.

[17]  R. Armstrong,et al.  Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. , 1997, Biochemistry.

[18]  P. van Bladeren,et al.  Interactions of alpha, beta-unsaturated aldehydes and ketones with human glutathione S-transferase P1-1. , 1997, Chemico-biological interactions.

[19]  R. Colman,et al.  Identification of the nonsubstrate steroid binding site of rat liver glutathione S-transferase, isozyme 1-1, by the steroid affinity label, 3beta-(iodoacetoxy)dehydroisoandrosterone. , 1997, Archives of biochemistry and biophysics.

[20]  H O Villar,et al.  Ligand‐based protein alignment and isozyme specificity of glutathione S‐transferase inhibitors , 1997, Proteins.

[21]  G. Gilliland,et al.  Crystal Structure of Tetradeca-(3-Fluorotyrosyl)-Glutathione Transferase , 1997 .

[22]  R. Armstrong,et al.  Structure, catalytic mechanism, and evolution of the glutathione transferases. , 1997, Chemical research in toxicology.

[23]  L. Ekström,et al.  Structural and Functional Aspects of Rat Microsomal Glutathione Transferase , 1997, The Journal of Biological Chemistry.

[24]  B. Mannervik,et al.  The Conserved N-capping Box in the Hydrophobic Core of Glutathione S-Transferase P1–1 Is Essential for Refolding , 1997, The Journal of Biological Chemistry.

[25]  J. Rossjohn,et al.  Site‐directed mutagenesis of the Proteus mirabilis glutathione transferase B1‐1 G‐site , 1998, FEBS letters.

[26]  M. Parker,et al.  The glutathione conjugate of ethacrynic acid can bind to human pi class glutathione transferase P1‐1 in two different modes , 1997, FEBS letters.

[27]  Y. Fujiyoshi,et al.  The 3.0 A projection structure of microsomal glutathione transferase as determined by electron crystallography of p 21212 two-dimensional crystals. , 1997, Journal of molecular biology.

[28]  R. Huber,et al.  The three‐dimensional structure of class pi glutathione S‐transferase in complex with glutathione sulfonate at 2.3 A resolution. , 1991, The EMBO journal.

[29]  G. Gilliland,et al.  Conformational changes in the crystal structure of rat glutathione transferase M1-1 with global substitution of 3-fluorotyrosine for tyrosine. , 1998, Journal of molecular biology.

[30]  G L Gilliland,et al.  Enzymes harboring unnatural amino acids: mechanistic and structural analysis of the enhanced catalytic activity of a glutathione transferase containing 5-fluorotryptophan. , 1998, Biochemistry.

[31]  J. L. Sexton,et al.  Crystallization, structural determination and analysis of a novel parasite vaccine candidate: Fasciola hepatica glutathione S-transferase. , 1997, Journal of molecular biology.

[32]  A. Caccuri,et al.  Proton release upon glutathione binding to glutathione transferase P1-1: kinetic analysis of a multistep glutathione binding process. , 1998, Biochemistry.

[33]  L. Wallace,et al.  Equilibrium and kinetic unfolding properties of dimeric human glutathione transferase A1-1. , 1998, Biochemistry.

[34]  H. Villar,et al.  The structures of human glutathione transferase P1-1 in complex with glutathione and various inhibitors at high resolution. , 1997, Journal of molecular biology.

[35]  D. Riendeau,et al.  Identification and Characterization of a Novel Microsomal Enzyme with Glutathione-dependent Transferase and Peroxidase Activities* , 1997, The Journal of Biological Chemistry.

[36]  C. Ibarra,et al.  Pressure‐dependent ionization of Tyr 9 in glutathione S‐transferase A1‐1: Contribution of the C‐terminal helix to a “soft” active site , 1997, Protein science : a publication of the Protein Society.

[37]  P. Babbitt,et al.  Exploration of the relationship between tetrachlorohydroquinone dehalogenase and the glutathione S-transferase superfamily. , 1996, Biochemistry.

[38]  G. Chelvanayagam,et al.  Homology model for the human GSTT2 theta class glutathione transferase , 1997, Proteins.

[39]  A. Seidel,et al.  Glutathione conjugation of bay- and fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferases M1-1 and P1-1. , 1997, Chemical research in toxicology.

[40]  R. Armstrong,et al.  Proton Configuration in the Ground State and Transition State of a Glutathione Transferase-Catalyzed Reaction Inferred from the Properties of Tetradeca(3-fluorotyrosyl)glutathione Transferase , 1996 .

[41]  T A Jones,et al.  Crystal structure of human glyoxalase I—evidence for gene duplication and 3D domain swapping , 1997, The EMBO journal.

[42]  S. Copley Microbial dehalogenases: enzymes recruited to convert xenobiotic substrates. , 1998, Current opinion in chemical biology.

[43]  R. Morgenstern,et al.  Binding of glutathione and an inhibitor to microsomal glutathione transferase. , 1997, The Biochemical journal.

[44]  B. Mannervik,et al.  Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. , 1997, The Biochemical journal.

[45]  G. Chelvanayagam,et al.  Zeta, a novel class of glutathione transferases in a range of species from plants to humans. , 1997, The Biochemical journal.

[46]  T. Baillie,et al.  Biotransformation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of phase I metabolites and glutathione conjugates. , 1997, Chemical research in toxicology.

[47]  S. Vuilleumier Bacterial glutathione S-transferases: what are they good for? , 1997, Journal of Bacteriology.

[48]  R. Huber,et al.  Structures of class pi glutathione S-transferase from human placenta in complex with substrate, transition-state analogue and inhibitor. , 1997, Structure.

[49]  R. Armstrong 5.04 – Nucleophilic Epoxide Openings , 1999 .