WAVEFORM RELAXATION METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS

L p -convergence of waveform relaxation methods (WRMs) for nu- merical solving of systems of ordinary stochastic difierential equations (SDEs) is studied. For this purpose, we convert the problem to an operator equation X = >>X + G in a Banach space E of Ft-adapted random elements describing the initial- or boundary value problem related to SDEs with weakly coupled, Lipschitz-continuous subsystems. The main convergence result of WRMs for SDEs depends on the spectral radius of a matrix associated to a decomposition of >>. A generalization to one-sided Lipschitz continuous coe-cients and a discussion on the example of singularly perturbed SDEs complete this paper.

[1]  G. Milstein Numerical Integration of Stochastic Differential Equations , 1994 .

[2]  Kiyosi Itô On a formula concerning stochastic differentials , 1951 .

[3]  O. Nevanlinna,et al.  Convergence of dynamic iteration methods for initial value problems , 1987 .

[4]  Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .

[5]  P. Protter Stochastic integration and differential equations , 1990 .

[6]  Kiyosi Itô Stochastic Differential Equations , 2018, The Control Systems Handbook.

[8]  Klau S. R. Schneider A remark on the wave-form relaxation method , 1991, Int. J. Circuit Theory Appl..

[9]  Petar Todorovic,et al.  Markov Processes I , 1992 .

[10]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[11]  H. Schurz,et al.  GENERAL THEOREMS FOR NUMERICAL APPROXIMATION OF STOCHASTIC PROCESSES ON THE HILBERT SPACE IR , 2002 .

[12]  Klaus R. Schneider,et al.  Vibrational control of singularly perturbed systems , 2001 .

[13]  N. Krylov Introduction to the theory of diffusion processes , 1994 .

[14]  P. Kloeden,et al.  Numerical Solution of Sde Through Computer Experiments , 1993 .

[15]  Stefan Vandewalle,et al.  SOR WAVEFORM , 1997 .

[16]  O. Sirisaengtaksin,et al.  Large-scale stochastic singularly perturbed systems , 1989 .

[17]  Kai Liu Stochastic Stability of Differential Equations in Abstract Spaces , 2019 .

[18]  G. Winkler,et al.  The Stochastic Integral , 1990 .

[19]  Denis Talay,et al.  Simulation of stochastic differential systems , 1995 .

[20]  D. Williams STOCHASTIC DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS , 1976 .

[22]  Shlomo Ta'asan,et al.  On the Multigrid Waveform Relaxation Method , 1995, SIAM J. Sci. Comput..

[24]  V. Lakshmikantham,et al.  Monotone iterative techniques for nonlinear differential equations , 1985 .

[25]  Heinz Bauer,et al.  Maß- und Integrationstheorie , 1992 .

[26]  O. Nevanlinna,et al.  Remarks on the convergence of waveform relaxation method , 1987 .

[27]  N. V. Krylov,et al.  A Simple Proof of the Existence of a Solution of Itô’s Equation with Monotone Coefficients , 1991 .

[28]  N. Krylov Itô stochastic integral , 2002 .

[29]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[30]  Zengqin Zhao,et al.  Iterative solutions of systems of operator equations in ordered Banach spaces and applications , 1996 .

[31]  Kevin Burrage,et al.  A Jacobi Waveform Relaxation Method for ODEs , 1998, SIAM J. Sci. Comput..

[32]  Barbara Zubik-Kowal,et al.  Waveform Relaxation for Functional-Differential Equations , 1999, SIAM J. Sci. Comput..

[33]  H. Schurz Stability, stationarity, and boundedness of some implicit numerical methods for stochastic differential equations and applications , 1997 .

[34]  K. J. is 't Hout,et al.  On the convergence of waveform relaxation methods for stiff nonlinear ordinary differential equations , 1995 .

[35]  Henri Schurz A brief introduction to numerical analysis of (ordinary) stochastic differential equations without tears , 1999 .

[36]  Zdzislaw Jackiewicz,et al.  Convergence of Waveform Relaxation Methods for Differential-Algebraic Systems , 1996 .

[37]  Kevin Burrage,et al.  Parallel and sequential methods for ordinary differential equations , 1995, Numerical analysis and scientific computation.

[38]  Benedict J. Leimkuhler Estimating Waveform Relaxation Convergence , 1993, SIAM J. Sci. Comput..

[39]  S. Vandewalle Parallel multigrid waveform relaxation for parabolic problems , 1993 .

[40]  Alberto L. Sangiovanni-Vincentelli,et al.  The Waveform Relaxation Method for Time-Domain Analysis of Large Scale Integrated Circuits , 1982, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[41]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[42]  A. A. Martynyuk Qualitative analysis of stochastic singularly perturbed systems , 1999, Neural Parallel Sci. Comput..

[43]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .

[44]  S. Zacks,et al.  Introduction to stochastic differential equations , 1988 .