Time and Space Efficient RNA-RNA Interaction Prediction via Sparse Folding

In the past years, a large set of new regulatory ncRNAs have been identified, but the number of experimentally verified targets is considerably low Thus, computational target prediction methods are on high demand Whereas all previous approaches for predicting a general joint structure have a complexity of O(n6) running time and O(n4) space, a more time and space efficient interaction prediction that is able to handle complex joint structures is necessary for genome-wide target prediction problems In this paper we show how to reduce both the time and space complexity of the RNA-RNA interaction prediction problem as described by Alkan et al [1] via dynamic programming sparsification - which allows to discard large portions of DP tables without loosing optimality Applying sparsification techniques reduces the complexity of the original algorithm from O(n6) time and O(n4) space to O(n4ψ(n)) time and O(n2ψ(n)+n3) space for some function ψ(n), which turns out to have small values for the range of n that we encounter in practice Under the assumption that the polymer-zeta property holds for RNA-structures, we demonstrate that ψ(n)=O(n) on average, resulting in a linear time and space complexity improvement over the original algorithm We evaluate our sparsified algorithm for RNA-RNA interaction prediction by total free energy minimization, based on the energy model of Chitsaz et al.[2], on a set of known interactions Our results confirm the significant reduction of time and space requirements in practice.

[1]  Phillip D. Zamore,et al.  RNA Interference , 2000, Science.

[2]  Rolf Backofen,et al.  IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions , 2008, Bioinform..

[3]  Wolfgang Huber,et al.  A high-resolution map of transcription in the yeast genome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[4]  L. Peliti,et al.  Why is the DNA denaturation transition first order? , 2000, Physical review letters.

[5]  S. Gottesman Micros for microbes: non-coding regulatory RNAs in bacteria. , 2005, Trends in genetics : TIG.

[6]  M. Zuker Prediction of RNA secondary structure by energy minimization. , 1994, Methods in molecular biology.

[7]  Phillip D. Zamore,et al.  Ribo-gnome: The Big World of Small RNAs , 2005, Science.

[8]  Tatsuya Akutsu,et al.  A grammatical approach to RNA-RNA interaction prediction , 2009, Pattern Recognit..

[9]  Kaizhong Zhang,et al.  RNA-RNA Interaction Prediction and Antisense RNA Target Search , 2006, J. Comput. Biol..

[10]  Hamidreza Chitsaz,et al.  biRNA: Fast RNA-RNA Binding Sites Prediction , 2009, WABI.

[11]  Peter F. Stadler,et al.  Thermodynamics of RNA-RNA Binding , 2006, German Conference on Bioinformatics.

[12]  Erik Winfree,et al.  Thermodynamic Analysis of Interacting Nucleic Acid Strands , 2007, SIAM Rev..

[13]  Rolf Backofen,et al.  Fast prediction of RNA-RNA interaction , 2009, Algorithms for Molecular Biology.

[14]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[15]  Klas Flärdh,et al.  Antisense RNAs everywhere? , 2002, Trends in genetics : TIG.

[16]  F. Simmel,et al.  DNA nanodevices. , 2005, Small.

[17]  Michal Ziv-Ukelson,et al.  A Study of Accessible Motifs and RNA Folding Complexity , 2006, RECOMB.

[18]  Christian M. Reidys,et al.  Partition function and base pairing probabilities for RNA-RNA interaction prediction , 2009, Bioinform..

[19]  Ron Shamir,et al.  A Faster Algorithm for RNA Co-folding , 2008, WABI.

[20]  Jerrold R. Griggs,et al.  Algorithms for Loop Matchings , 1978 .

[21]  Peter F. Stadler,et al.  Partition function and base pairing probabilities of RNA heterodimers , 2006, Algorithms for Molecular Biology.

[22]  Rita Casadio,et al.  Algorithms in Bioinformatics, 5th International Workshop, WABI 2005, Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, WABI.

[23]  Rolf Backofen,et al.  Fast Prediction of RNA-RNA Interaction , 2009, WABI.

[24]  Rolf Backofen,et al.  Sparse RNA Folding: Time and Space Efficient Algorithms , 2009, CPM.

[25]  Philip S Lukeman,et al.  Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale , 2005, Reports on progress in physics. Physical Society.

[26]  L. Argaman,et al.  fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. , 2000, Journal of molecular biology.

[27]  J. Steitz,et al.  The expanding universe of noncoding RNAs. , 2006, Cold Spring Harbor symposia on quantitative biology.

[28]  D. Sankoff Simultaneous Solution of the RNA Folding, Alignment and Protosequence Problems , 1985 .

[29]  A. Condon,et al.  Secondary structure prediction of interacting RNA molecules. , 2005, Journal of molecular biology.

[30]  N. Seeman From genes to machines: DNA nanomechanical devices. , 2005, Trends in biochemical sciences.

[31]  Robert M. Dirks,et al.  An autonomous polymerization motor powered by DNA hybridization , 2007, Nature Nanotechnology.

[32]  Harry M. T. Choi,et al.  Programming DNA Tube Circumferences , 2008, Science.

[33]  G. Storz,et al.  Target prediction for small, noncoding RNAs in bacteria , 2006, Nucleic acids research.

[34]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[35]  G. Hannon RNA interference : RNA , 2002 .

[36]  Hamidreza Chitsaz,et al.  A partition function algorithm for interacting nucleic acid strands , 2009, Bioinform..

[37]  Michael E. Fisher,et al.  Shape of a Self‐Avoiding Walk or Polymer Chain , 1966 .

[38]  D. Pervouchine IRIS: intermolecular RNA interaction search. , 2004, Genome informatics. International Conference on Genome Informatics.

[39]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[40]  S. Brantl,et al.  Antisense-RNA regulation and RNA interference. , 2002, Biochimica et biophysica acta.

[41]  Lan Chen,et al.  NPInter: the noncoding RNAs and protein related biomacromolecules interaction database , 2005, Nucleic Acids Res..

[42]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..