Aluminum Abundances, Deep Mixing, and the Blue-Tail Second- Parameter Effect in the Globular Clusters M3 and M1 3

We analyze high-resolution, high signal-to-noise ratio spectra of six red giant branch (RGB) stars in the globular cluster M3 (NGC 5272) and three in M13 (NGC 6205) that were obtained with the 4 m Mayall Telescope and echelle spectrometer on Kitt Peak. The spectra include lines of O, Na, Mg, Al, Si, Ca, Ti, V, Mn, Fe, and Ni. We also analyze the [Al/Fe] values of 96 RGB stars in M13 covering the brightest 3.5 mag, which include 66 measurements that were derived from moderate-resolution, low signal-to-noise ratio spectra obtained with the WIYN 3.5 m telescope and Hydra multiobject spectro graph, also on Kitt Peak. In addition, we compile from the literature and inspect the [Na/Fe] values of 119 RGB stars in M13. We test for bimodality in the [Al/Fe] and [Na/Fe] distributions using the KMM algorithm and find that the [Al/Fe] values in M13 are distributed bimodally at all points along the RGB that were observed, while the [Na/Fe] values are bimodal only over the brightest 2 mag. The ratios of Al-enhanced to Al-normal and Na-enhanced to Na-normal giants increase toward the tip of the RGB in M13, which is suggestive of deep mixing in this cluster. The limited M3 data exhibit a bimodal distribution of [Al/Fe] values and are suggestive of no deep mixing; however, they are too few to be conclusive. We further test for a relationship between deep mixing on the RGB and a second parameter that can create the extended blue tail seen along the horizontal branches of some clusters by using an "instantaneous" mixing algorithm, which we develop here. We conclude that the data for both clusters are consistent with deep mixing as a "blue-tail second parameter," and we suggest future observations to further constrain the results. Finally, we offer a solution to the problem of overproducing sodium during deep mixing that is based on the depletion of 22Ne in asymptotic giant branch stars and suggest that pollution might best be traced by s-process elements in the Sr-Y-Zr peak.

[1]  C. Sneden,et al.  A Survey for Enhanced Lithium in 261 Globular Cluster Giants , 2000 .

[2]  Arlette Noels-Grötsch,et al.  The Galactic halo. From globular clusters to field stars. Proceedings. , 2000 .

[3]  M. Tosi The Chemical Evolution of the Milky Way , 2000 .

[4]  C. Iliadis,et al.  Reaction rate of 24Mg(p,γ)25Al , 1999 .

[5]  P. Aguer,et al.  A compilation of charged-particle induced thermonuclear reaction rates , 1999 .

[6]  Kiyoshi Katō,et al.  A Model of Deep Mixing in Globular Cluster Red Giants , 1999 .

[7]  A. Chieffi,et al.  The Luminosity Function of M3 , 1999, astro-ph/9905193.

[8]  U. T. Austin,et al.  An Extremely Lithium-rich Bright Red Giant in the Globular Cluster M3 , 1999, astro-ph/9904152.

[9]  B. Gibson,et al.  The Third Stromlo symposium : the galactic HALO : proceedings of a symposium held at Australian Academy of Science, Canberra, Australia 17-21 August, 1998 , 1999 .

[10]  S. Heap,et al.  Spectrophotometric Dating of Stars and Galaxies , 1999 .

[11]  Russell D. Cannon,et al.  Carbon and nitrogen abundance variations on the main sequence of 47 Tucanae , 1998 .

[12]  E. R. Cohen An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1998 .

[13]  M. Catelán,et al.  The Second-Parameter Effect in Metal-rich Globular Clusters , 1998, astro-ph/9909384.

[14]  G. Worthey,et al.  Color‐Color Relations for Red Giants in Star Clusters , 1998, astro-ph/9804001.

[15]  Jennifer A. Johnson,et al.  VI Photometry of Nearby Globular Clusters: M3, M5, M13, and M92 , 1998 .

[16]  C. Deliyannis,et al.  Keck HIRES Spectroscopy of M92 Subgiants: Surprising Abundances near the Turnoff , 1998 .

[17]  R. Rood,et al.  Multimodal Distributions along the Horizontal Branch , 1997, astro-ph/9708210.

[18]  Robert M. Cavallo,et al.  Proton-Capture Nucleosynthesis in Globular Cluster Red Giant Stars , 1997, astro-ph/9708099.

[19]  A. Mezzacappa Stellar evolution, stellar explosions and galactic chemical evolution : proceedings of the 2nd Oak Ridge Symposium on Atomic and Nuclear Astrophysics, Oak Ridge, Tennessee, 2-6 December 1997 , 1998 .

[20]  L. Wallace,et al.  An atlas of the spectrum of the solar photosphere from 13,500 to 28,000 cm-1 (3570 to 7405 A) , 1998 .

[21]  V. Smith,et al.  Star-to-Star Abundance Variations among Bright Giants in the Mildly Metal-poor Globular Cluster M4 , 1999, astro-ph/9905370.

[22]  P. Demarque,et al.  THE RELATIVE AGES OF GALACTIC GLOBULAR CLUSTERS , 1997, astro-ph/9710245.

[23]  L. Krauss,et al.  The Age of Globular Clusters in Light of Hipparcos: Resolving the Age Problem? , 1997, astro-ph/9706128.

[24]  S. Djorgovski,et al.  Discovery of Extended Blue Horizontal Branches in Two Metal-rich Globular Clusters , 1997, astro-ph/9705039.

[25]  R. Hoffman,et al.  OBSERVATIONAL CONSTRAINTS ON THE ORIGIN OF THE ALUMINUM ENHANCEMENTS AND MAGNESIUM DEPLETIONS IN BRIGHT M13 GIANTS , 1997 .

[26]  G. Langer,et al.  THERMONUCLEAR REACTION RATES FOR THE 24MG(P,\GAMMA)25AL REACTION , 1997 .

[27]  M. Shetrone,et al.  Proton Capture Chains in Globular Cluster Stars.II.Oxygen, Sodium, Magnesium, and Aluminum Abundances in M13 Giants Brighter Than the Horizontal Branch , 1997 .

[28]  A. Sweigart Effects of Helium Mixing on the Evolution of Globular Cluster Stars , 1997 .

[29]  D. Hatzidimitriou,et al.  Advances in Stellar Evolution , 1997 .

[30]  V. Smith,et al.  Isotopic Carbon Abundances in M71 , 1997 .

[31]  M. Shetrone Al, Mg and Eu Abundances in Globular Cluster Giants. I. Tests of Deep Mixing , 1996 .

[32]  D. Zucker,et al.  ABUNDANCES OF SELECTED ELEMENTS IN FIVE OXYGEN-POOR STARS IN OMEGA CENTAURI , 1996 .

[33]  C. Sneden,et al.  Proton Capture Chains in Glubular Cluster Stars. I. Evidence for Deep Mixing Based on Sodium and Magnesium Abundances in M13 Giants , 1996 .

[34]  NasaGsfc,et al.  The Production of Sodium and Aluminum in Globular Cluster Red Giant Stars , 1996, astro-ph/9604023.

[35]  M. Shetrone Magnesium and carbon isotopes in globular cluster giants. Tests of deep mixing. II , 1996 .

[36]  H. Morrison,et al.  Formation of the galactic halo .... inside and out : a meeting held in honor of the 65th birthday of George Preston, Tucson, Arizona, 9-11 October 1995 , 1996 .

[37]  V. Smith,et al.  Sodium abundance variations in main-sequence stars of the globular cluster 47 Tucanae , 1996, Nature.

[38]  A. Boothroyd,et al.  The CNO Isotopes: Deep Circulation in Red Giants and First and Second Dredge-up , 1995, astro-ph/9512121.

[39]  Phillip J. MacQueen,et al.  THE HIGH-RESOLUTION CROSS-DISPERSED ECHELLE WHITE PUPIL SPECTROMETER OF THE MCDONALD OBSERVATORY 2.7-M TELESCOPE , 1995 .

[40]  M. Shetrone,et al.  Oxygen Abundances in Halo Giants. VI. M10, A Globular Cluster with Metallicity Similar to M3 and M13 , 1995 .

[41]  K. Ashman,et al.  Detecting Bimodality in Astronomical Datasets , 1994, astro-ph/9408030.

[42]  J. Hesser,et al.  Light element abundance inhomogeneities in globular clusters: probing star formation and evolution in the early Milky Way , 1994, astro-ph/9408007.

[43]  R. P. Kraft ABUNDANCE DIFFERENCES AMONG GLOBULAR CLUSTER GIANTS: PRIMORDIAL VS. EVOLUTIONARY SCENARIOS , 1994 .

[44]  S. Johansson,et al.  A New Multiplet Table for Fe , 1994, astro-ph/9404049.

[45]  M. Shetrone,et al.  Oxygen abundances in halo giants. IV. The oxygen-sodium anticorrelation in a sample of 22 bright giants in M13 , 1993 .

[46]  C. Sneden,et al.  SODIUM-OXYGEN ABUNDANCE ANTICORRELATIONS AND DEEP MIXING SCENARIOS FOR GLOBULAR CLUSTER GIANTS , 1993 .

[47]  G. J. Matthews,et al.  Asymptotic-giant-branch stars , 1992, Nature.

[48]  C. Sneden,et al.  Oxygen abundances in halo giants. II : Giants in the globular clusters M13 and M3 and the intermediately metal-poor halo field , 1992 .

[49]  B. A. Brown,et al.  Nuclei in the Cosmos , 2009, 0902.3090.

[50]  V. Smith,et al.  Carbon isotopic abundances in giant stars in the CN-bimodal globular clusters NGC 6752 and M4 , 1991 .

[51]  J. Hesser,et al.  C and N abundances among 47 Tucanae main-sequence stars , 1991 .

[52]  Jeffery A. Brown,et al.  Carbon isotope ratios along the giant branch of M67 , 1991 .

[53]  M. Lehnert,et al.  Abundances in the Red Giants of M13 and M22 , 1991 .

[54]  C. Sneden,et al.  Oxygen abundances in halo giants. I : giants in the very metal-poor globular clusters M92 and M15 and the metal-poor halo field , 1991 .

[55]  R. J. Dickens,et al.  An Analysis of G-Band Strengths in NGC 6397 and M55 Red Giants , 1990 .

[56]  J. Hesser,et al.  Variations in C-12/C-13 as an explanation for the 3883 A CN-bimodality among 47 Tucanae subgiants , 1989 .

[57]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[58]  W. Fowler,et al.  Thermonuclear reaction rates V , 1988 .

[59]  D. VandenBerg,et al.  Thermal Instabilities in Low-Mass Subgiants? , 1988 .

[60]  G. Wallerstein,et al.  High-Resolution CCD Spectra of Stars in Globular Clusters. III. M4, M13, and M22 , 1987 .

[61]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[62]  E. Friel,et al.  ON THE CARBON ABUNDANCE OF SUBGIANT STARS IN THE GLOBULAR CLUSTER M 92. , 1985 .

[63]  R. Peterson The rotation of horizontal-branch stars. II: Members of the globular clusters M3, M5, and M13 , 1983 .

[64]  N. Suntzeff,et al.  Carbon and nitrogen abundances in giant stars of the metal-poor globular cluster M15. , 1983 .

[65]  N. Suntzeff,et al.  Carbon and nitrogen abundances in giant stars of the metal-poor globular cluster M92 , 1982 .

[66]  A. Sandage,et al.  On the intrinsic widths of the subgiant and horizontal branch sequences in the globular cluster M3 , 1982 .

[67]  J. Taylor An Introduction to Error Analysis , 1982 .

[68]  N. Suntzeff Carbon and nitrogen abundances in the giant stars of the globular clusters M3 and M13 , 1981 .

[69]  G. Costa,et al.  Correlated cyanogen and sodium anomalies in the globular clusters 47 Tuc and NGC 6752 , 1981 .

[70]  K. Cudworth Proper motions, membership, and internal motions in the globular cluster M3. , 1979 .

[71]  D. Monet,et al.  Astrometry in the globular cluster M13. I - New proper motions and membership probabilities , 1979 .

[72]  A. Sweigart,et al.  Meridional circulation and CNO anomalies in red giant stars , 1979 .

[73]  R. J. Dickens,et al.  Carbon abundances in red giant stars in the globular clusters M92 and NGC 6397 , 1979 .

[74]  J. Frogel,et al.  Infrared photometry, bolometric magnitudes, and effective temperatures for giants in M3, M13, M92, and M67 , 1978 .

[75]  H. Holweger,et al.  The photospheric barium spectrum: Solar abundance and collision broadening of Baii lines by hydrogen , 1974 .

[76]  C. Sneden The nitrogen abundance of the very metal-poor star HD 122563. , 1973 .

[77]  I. Iben Stellar Evolution.VI. Evolution from the Main Sequence to the Red-Giant Branch for Stars of Mass 1 M_{sun}, 1.25 M_{sun}, and 1.5 M_{sun} , 1967 .

[78]  C. E. Moore,et al.  The Solar Spectrum 2935 Å to 8770 Å , 1966 .

[79]  H. Arp,et al.  Color-magnitude diagrams for seven globular clusters. , 1955 .

[80]  A. Sandage The color-magnitude diagram for the globular cluster M 3. , 1953 .

[81]  Jason Barnes,et al.  Inside and out , 1891, The Hospital.

[82]  C. A. Young,et al.  The Solar Spectrum , 1871, Nature.