Development of RuS2 for near-infrared photodetector by atomic layer deposition and post-sulfurization

[1]  Manuel F. C. Pereira,et al.  Preparation and densification of bulk pyrite, FeS2 , 2021 .

[2]  Chao Xie,et al.  Multilayered PdTe₂/GaN Heterostructures for Visible-Blind Deep-Ultraviolet Photodetection , 2021, IEEE Electron Device Letters.

[3]  Soo‐Hyun Kim,et al.  Atomic Layer Deposition of Ru for Replacing Cu-Interconnects , 2021, Chemistry of Materials.

[4]  Saulius Gražulis,et al.  Validation of the Crystallography Open Database using the Crystallographic Information Framework , 2021, Journal of applied crystallography.

[5]  F. Liang,et al.  Direct Tellurization of Pt to Synthesize 2D PtTe2 for High-Performance Broadband Photodetectors and NIR Image Sensors. , 2020, ACS applied materials & interfaces.

[6]  Dajun Wang,et al.  Sulfur vacancy enhances the electronic and optical properties of FeS2 as the high performance electrode material , 2020 .

[7]  Kenichi Nakashi,et al.  On Near-Infrared Optical Properties of Ethanol for a Wearable Blood Alcohol Sensor , 2020, 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE).

[8]  J. Warner,et al.  2D layered noble metal dichalcogenides (Pt, Pd, Se, S) for electronics and energy applications , 2020 .

[9]  R. Chauhan,et al.  Impact of Different Gate Metals on the RF Performance of Gallium Oxide MOSFET , 2020 .

[10]  Paul Wesling,et al.  The Heterogeneous Integration Roadmap: Enabling Technology for Systems of the Future , 2020, 2020 Pan Pacific Microelectronics Symposium (Pan Pacific).

[11]  S. Lau,et al.  Photoresponse of wafer-scale palladium diselenide films prepared by selenization method , 2019, Journal of Physics D: Applied Physics.

[12]  T. Heine,et al.  Two‐Dimensional Noble‐Metal Chalcogenides and Phosphochalcogenides† , 2020, Angewandte Chemie.

[13]  J. L. D. Da Silva,et al.  First-Principles Exploration of Two-Dimensional Transition Metal Dichalcogenides Based on Fe, Co, Ni, and Cu Groups and Their van der Waals Heterostructures , 2019 .

[14]  Qinghua Zhang,et al.  A Noble Metal Dichalcogenide for High‐Performance Field‐Effect Transistors and Broadband Photodetectors , 2019, Advanced Functional Materials.

[15]  Paul-Gerald Dittrich,et al.  Measurement accuracy and dependence on external influences of the iPhone X TrueDepth sensor , 2019, Other Conferences.

[16]  S. Lau,et al.  Wafer-Scale Fabrication of Two-Dimensional PtS2/PtSe2 Heterojunctions for Efficient and Broad band Photodetection. , 2018, ACS applied materials & interfaces.

[17]  Tingting Xu,et al.  Design of 2D Layered PtSe2 Heterojunction for the High-Performance, Room-Temperature, Broadband, Infrared Photodetector , 2018, ACS Photonics.

[18]  L. Luo,et al.  High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. , 2018, Nanoscale.

[19]  Andrius Merkys,et al.  Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database , 2018, Journal of Cheminformatics.

[20]  Jinlan Wang,et al.  Towards a Comprehensive Understanding of the Reaction Mechanisms Between Defective MoS2 and Thiol Molecules. , 2017, Angewandte Chemie.

[21]  Xinran Wang,et al.  Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics , 2017 .

[22]  Y. Chai,et al.  Few‐Layered PtS2 Phototransistor on h‐BN with High Gain , 2017 .

[23]  S. Kohara,et al.  Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure. , 2016, Physical chemistry chemical physics : PCCP.

[24]  Xiaodong Xu,et al.  Valleytronics in 2D materials , 2016 .

[25]  Saulius Gražulis,et al.  COD::CIF::Parser: an error-correcting CIF parser for the Perl language , 2016, Journal of applied crystallography.

[26]  R. Hamers,et al.  Direct Chemical Vapor Deposition Synthesis of Phase-Pure Iron Pyrite (FeS2) Thin Films , 2015 .

[27]  A. Altomare,et al.  QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD , 2015 .

[28]  Saulius Gražulis,et al.  Computing stoichiometric molecular composition from crystal structures , 2015, Journal of applied crystallography.

[29]  Emiliano Sisinni,et al.  Acquisition and elaboration of cardiac signal in android Smartphone devices , 2014, 2014 IEEE Sensors Applications Symposium (SAS).

[30]  Vijander Singh,et al.  Near-infrared LED based non-invasive blood glucose sensor , 2014, 2014 International Conference on Signal Processing and Integrated Networks (SPIN).

[31]  K. Banerjee,et al.  High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance , 2013, 2013 IEEE International Electron Devices Meeting.

[32]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[33]  M. Law,et al.  Effect of surface stoichiometry on the band gap of the pyrite FeS2(100) surface , 2012 .

[34]  Peter Moeck,et al.  Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration , 2011, Nucleic Acids Res..

[35]  Sushil Auluck,et al.  Normal state and superconducting properties of Rh17S15 and Pd17Se15 , 2011, Superconductor Science and Technology.

[36]  S. Ramakrishan,et al.  Superconductivity in Rh17S15 and Pd17Se15: A Comparative Study , 2011 .

[37]  N. Marzari,et al.  First-principles characterization of the structure and electronic structure of α-S and Rh-S chalcogenides , 2009, 0908.1625.

[38]  Sumio Kamiya,et al.  Phase Controllable Synthesis of Well-Crystallized Rhodium Sulfides by the Hydrothermal Method , 2009 .

[39]  Saulius Gražulis,et al.  Crystallography Open Database – an open-access collection of crystal structures , 2009, Journal of applied crystallography.

[40]  J. Ramírez,et al.  Structure, stability and activity of RuS2 supported on alumina , 2008 .

[41]  Carmelo Giacovazzo,et al.  QUALX: a computer program for qualitative analysis using powder diffraction data , 2008 .

[42]  M. Stchakovsky,et al.  What can Raman spectroscopy and spectroscopic ellipsometry bring for the characterisation of thin films and materials surface? , 2008 .

[43]  O. Richardson The Emission of Electricity from Hot Bodies , 2007, Nature.

[44]  L. Huang,et al.  Effects of film thickness on microstructure and electrical properties of the pyrite films , 2007 .

[45]  C. Ho,et al.  Characterization of near band-edge properties of synthetic p-FeS2 iron pyrite from electrical and photoconductivity measurements , 2006 .

[46]  J. Ramírez,et al.  TPR-S analysis of the catalytic behavior of Ru/Al2O3 catalysts in industrial conditions , 2005 .

[47]  F. Massoth,et al.  Hydrodenitrogenation of Petroleum , 2005 .

[48]  James D. Garnett,et al.  2Kx2K molecular beam epitaxy HgCdTe detectors for the James Webb Space Telescope NIRCam instrument , 2004, SPIE Astronomical Telescopes + Instrumentation.

[49]  Hyungjun Kim,et al.  Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing , 2003 .

[50]  T. Ho Hydrodesulfurization with RuS2 at Low Hydrogen Pressures , 2003 .

[51]  R. Downs Topology of the pyroxenes as a function of temperature, pressure, and composition as determined from the procrystal electron density , 2003 .

[52]  Marcia J. Rieke,et al.  The near-infrared camera (NIRCam) for the James Webb Space Telescope (JWST) , 2002, SPIE Astronomical Telescopes + Instrumentation.

[53]  P. Sautet,et al.  On the nature of RuS2 HDS active sites: insight from ab initio theory , 2001 .

[54]  Sarath D. Gunapala,et al.  Medical infrared imaging - differentiating facts from fiction, and the impact of high precision quantum well infrared photodetector camera systems, and other factors, in its reemergence , 2001 .

[55]  J. Brenan,et al.  HIGH-TEMPERATURE STABILITY OF LAURITE AND Ru–Os–Ir ALLOY AND THEIR ROLE IN PGE FRACTIONATION IN MAFIC MAGMAS , 2001 .

[56]  P. Sautet,et al.  Density functional study of the structural and electronic properties of RuS2(111): II. Hydrogenated surfaces , 2000 .

[57]  Yong Xu,et al.  The absolute energy positions of conduction and valence bands of selected semiconducting minerals , 2000 .

[58]  Ying-Sheng Huang,et al.  Optical absorption studies of pyrite-type RuS2 RuSe2 and RuTe2 single crystals , 1996 .

[59]  P. Kluson,et al.  Selective hydrogenation over ruthenium catalysts , 1995 .

[60]  Ying-Sheng Huang,et al.  An optical absorption study of RuS2 single crystals , 1995 .

[61]  W. David,et al.  Properties of the transition metal dichalcogenides: The case of IrS2 and IrSe2 , 1990 .

[62]  B. Kellett,et al.  Thermodynamics of Densification: I, Sintering of Simple Particle Arrays, Equilibrium Configurations, Pore Stability, and Shrinkage , 1989 .

[63]  Yen-Ru Huang,et al.  Raman investigation of RuS2 , 1989 .

[64]  B. Tatarchuk,et al.  Hydrogenation and hydrodesulfurization over sulfided ruthenium catalysts: II. Impact of surface phase behavior on activity and selectivity , 1988 .

[65]  B. Tatarchuk,et al.  Hydrogenation and hydrodesulfurization over sulfided ruthenium catalysts: I. Catalysts containing partial monolayers of adsorbed sulfur , 1988 .

[66]  Ying-Sheng Huang,et al.  Growth and characterization of RuS2 single crystals , 1988 .

[67]  W. Jaegermann,et al.  XPS. Analysis of the oxidation reaction of ruthenium-chalcogenide photoelectrodes , 1986 .

[68]  H. Ezzaouia,et al.  Crystal growth of p-type RuS2 using bismuth flux and its photoelectrochemical properties , 1985 .

[69]  F. Lévy,et al.  RuS2 and RuSe2 single crystals: a study of phonons, optical absorption and electronic properties , 1985 .

[70]  H. Ezzaouia,et al.  Crystal growth in tellurium fluxes and characterization of RuS2 single crystals , 1985 .

[71]  F. Lévy,et al.  Growth and physical properties of RuS2 single crystals , 1984 .

[72]  R. Kötz,et al.  XPS Studies of Oxygen Evolution on Ru and RuO2 Anodes , 1983 .

[73]  T. Sugeta,et al.  Metal-Semiconductor-Metal Photodetector for High-Speed Optoelectronic Circuits , 1980 .

[74]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[75]  Stephen Robert Shatynski,et al.  The thermochemistry of transition metal sulfides , 1977 .

[76]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[77]  H. Zachariasen,et al.  Recovery of nickel, copper and precious metal concentrate from high grade precious metal mattes , 1975 .

[78]  S. M. Sze,et al.  Current transport in metal-semiconductor-metal (MSM) structures , 1971 .

[79]  A. Y. C. Yu,et al.  The metal-semiconductor contact: an old device with a new future , 1970, IEEE Spectrum.

[80]  H. Greenfield,et al.  Platinum Metal Sulfides as Heterogeneous Hydrogenation Catalysts , 1965 .

[81]  F. Hulliger Electrical Properties of Pyrite-Type and Related Compounds with Zero Spin Moment , 1963, Nature.

[82]  D. Johnson,et al.  Diffusion Sintering: I, Initial Stage Sintering Models and Their Application to Shrinkage of Powder Compacts , 1963 .

[83]  R. G. Ross,et al.  High temperature X-ray metallography: I. A new debye-scherrer camera for use at very high temperatures II. A new parafocusing camera III. Applications to the study of chromium, hafnium, molybdenum, rhodium, ruthenium and tungsten , 1963 .

[84]  S. Geller The crystal structure of the superconductor Rh17S15 , 1962 .

[85]  J. McKetta,et al.  Thermodynamic properties of sulfur dioxide , 1961 .

[86]  J. West Thermodynamic Properties of Sulfur , 1950 .

[87]  R. Milton,et al.  Toxic Manifestations of Osmium Tetroxide , 1946, British journal of industrial medicine.

[88]  P. Ehrlich,et al.  Beiträge zur systematischen Verwandtschaftslehre. 74. Über die Sulfide des Iridiums , 1937 .

[89]  H. Krall,et al.  Die Sulfide, Selenide und Telluride der sechs Platinmetalle , 1933 .

[90]  Liang-Bi Chen,et al.  A band-pass IR light photodetector for wearable intelligent glasses in a drowsiness-fatigue-detection system , 2018, 2018 IEEE International Conference on Consumer Electronics (ICCE).

[91]  A. Merla,et al.  The Use of Infrared Thermography in the Study of Sport and Exercise Physiology , 2017 .

[92]  Ivar Oftedal Über die Kristallstrukturen der Verbindungen RuS2, OsS2, MnTe2 und AuSb2 , 2016 .

[93]  T. Tani Analysis of Work Functions of Noble Metals in Ambient Atmosphere in Commemoration of Journal Award , 2015 .

[94]  K. Ellmer,et al.  Structural, optical and electrical properties of RuS2 ± x films, prepared by reactive magnetron sputtering , 2013 .

[95]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[96]  K. Rosso,et al.  Sulfide Mineral Surfaces , 2006 .

[97]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[98]  R. Downs,et al.  The American Mineralogist crystal structure database , 2003 .

[99]  J. Beck,et al.  Ein ,altes‘ Rhodiumsulfid mit überraschender Struktur: Synthese, Kristallstruktur und elektronische Eigenschaften von Rh3S4 , 2000 .

[100]  J. Hafner,et al.  ADSORPTION OF THIOPHENE ON RUS2: AN AB INITIO DENSITY-FUNCTIONAL STUDY , 1998 .

[101]  B. Nabet,et al.  Simple analytical model of bias dependence of the photocurrent of metal-semiconductor-metal photodetectors. , 1996, Applied optics.

[102]  E.E. Pissaloux,et al.  Image Processing , 1994, Proceedings. Second Euromicro Workshop on Parallel and Distributed Processing.

[103]  Richard H. Bube,et al.  Recombination in Semiconductors , 1993 .

[104]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[105]  V. Kaloidas,et al.  Hydrogen production from the decomposition of hydrogen sulphide. Equilibrium studies on the system H2S/H2/Si, (i=1,...,8) in the gas phase , 1987 .

[106]  J. Tauc,et al.  Optical properties and electronic structure of amorphous Ge and Si , 1968 .