A NEW METHOD FOR MEASURING EXTRAGALACTIC DISTANCES

We have pioneered a new method for the measurement of extragalactic distances. This method uses the time lag between variations in the short wavelength and long wavelength light from an active galactic nucleus (AGN), based on a quantitative physical model of dust reverberation that relates the time lag to the absolute luminosity of the AGN. We use the large homogeneous data set from intensive monitoring observations in optical and near-infrared wavelength bands with the dedicated 2 m MAGNUM telescope to obtain the distances to 17 AGNs in the redshift range z = 0.0024 to z = 0.0353. These distance measurements are compared with distances measured using Cepheid variable stars, and are used to infer that H 0 = 73 ± 3 (random) km s–1 Mpc–1. The systematic error in H 0 is examined, and the uncertainty in the size distribution of dust grains is the largest source of the systematic error, which is much reduced for a sample of AGNs for which their parameter values in the model of dust reverberation are individually measured. This AGN time lag method can be used beyond 30 Mpc, the farthest distance reached by extragalactic Cepheids, and can be extended to high-redshift quasi-stellar objects.

[1]  R. Antonucci,et al.  The Nuclear Reddening Curve for Active Galactic Nuclei and the Shape of the Infrared to X-Ray Spectral Energy Distribution , 2003, astro-ph/0309595.

[2]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[3]  Research Center for the Early Universe,et al.  LONG-TERM OPTICAL CONTINUUM COLOR VARIABILITY OF NEARBY ACTIVE GALACTIC NUCLEI , 2010, 1001.5162.

[4]  E. Hubble A RELATION BETWEEN DISTANCE AND RADIAL VELOCITY AMONG EXTRA-GALACTIC NEBULAE. , 1929, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Takeo Minezaki,et al.  Multicolor imaging photometer for the MAGNUM project , 1998, Astronomical Telescopes and Instrumentation.

[6]  O. Blaes,et al.  The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared , 2008, Nature.

[7]  Kindler-Rohrborn,et al.  In press , 1994, Molecular carcinogenesis.

[8]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[9]  J. Trump,et al.  HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY , 2010, 1009.3276.

[10]  O. Blaes,et al.  The UV Continuum of Quasars: Models and SDSS Spectral Slopes , 2007, 0707.1456.

[11]  R. Barvainis,et al.  Hot Dust and the Near-Infrared Bump in the Continuum Spectra of Quasars and Active Galactic Nuclei , 1987 .

[12]  Garth D. Illingworth,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXVIII. Combining the Constraints on the Hubble Constant , 1999, astro-ph/9909260.

[13]  R. Blandford,et al.  Fermat's principle, caustics, and the classification of gravitational lens images , 1986 .

[14]  E. Salpeter FORMATION AND DESTRUCTION OF DUST GRAINS , 1977 .

[15]  B. Peterson,et al.  Inner Size of a Dust Torus in the Seyfert 1 Galaxy NGC 4151 , 2003, astro-ph/0311338.

[16]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[17]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[18]  K. Sato,et al.  New Trends in Theoretical and Observational Cosmology , 2001 .

[19]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[20]  Bradley M. Peterson,et al.  THE LOW-LUMINOSITY END OF THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI , 2013, 1303.1742.

[21]  M. Mori,et al.  NEAR-INFRARED REVERBERATION BY DUSTY CLUMPY TORI IN ACTIVE GALACTIC NUCLEI , 2011, 1107.0678.

[22]  to appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 11/26/04 MULTIPLE REGRESSION ANALYSIS OF THE VARIABLE COMPONENT IN THE NEAR-INFRARED REGION FOR TYPE 1 AGN MCG+08-11-011 , 2006 .

[23]  H. Takami,et al.  An infrared study of hot dust in quasars using prism spectrophotometry , 1993 .

[24]  Astrophysics,et al.  VARIATION OF INNER RADIUS OF DUST TORUS IN NGC4151 , 2009, 0907.0573.

[25]  A. F. Davidsen,et al.  The Rest-Frame Extreme-Ultraviolet Spectral Properties of Quasi-stellar Objects , 2001, astro-ph/0109531.

[26]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[27]  Bradley M. Peterson,et al.  A NEW DIRECT METHOD FOR MEASURING THE HUBBLE CONSTANT FROM REVERBERATING ACCRETION DISCS IN ACTIVE GALAXIES , 1999 .

[28]  B. Peterson Probing the Physics of Active Galactic Nuclei , 2004 .

[29]  G. Weigelt,et al.  The innermost region of AGN tori: implications from the HST/NICMOS type 1 point sources and near-IR reverberation , 2007, 0709.0431.

[30]  A. Schwarzenberg-Czerny,et al.  Towards equation of state of dark energy from quasar monitoring: Reverberation strategy , 2012, 1212.0472.

[31]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[32]  K. Enya,et al.  First Detection of Near-Infrared Intraday Variations in the Seyfert 1 Nucleus NGC 4395 , 2006, astro-ph/0604183.

[33]  H. Winkler The extinction, flux distribution and luminosity of Seyfert 1 nuclei derived from UBV(RI)C aperture photometry , 1997 .

[34]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[35]  H. Winkler,et al.  Testing thermal reprocessing in active galactic nuclei accretion discs , 2007, 0706.1464.

[36]  R. Barvainis Infrared Spectral Energy Distributions of Radio Quiet Quasars , 1990 .

[37]  G. Richards,et al.  MEAN SPECTRAL ENERGY DISTRIBUTIONS AND BOLOMETRIC CORRECTIONS FOR LUMINOUS QUASARS , 2013, 1304.5573.

[38]  Western Michigan University,et al.  The near‐infrared broad emission line region of active galactic nuclei – II. The 1‐μm continuum , 2011, 1101.3342.

[39]  J. Tonry,et al.  The Surface Brightness Fluctuation Survey of Galaxy Distances. II. Local and Large-Scale Flows , 1999, astro-ph/9907062.

[40]  Ari Laor,et al.  Spectroscopic constraints on the properties of dust in active galactic nuclei , 1993 .

[41]  B. Madore,et al.  The Hubble Constant , 2010, 1004.1856.

[42]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[43]  B. Peterson,et al.  AGN Variability from X-Rays to Radio Waves , 2006 .