Hook Formulas for Skew Shapes II. Combinatorial Proofs and Enumerative Applications
暂无分享,去创建一个
[1] Nathan Williams,et al. Doppelgängers: Bijections of Plane Partitions , 2016, 1602.05535.
[2] Ian P. Goulden,et al. Planar decompositions of tableaux and Schur function determinants , 1995, Eur. J. Comb..
[3] H. Wilf,et al. A probabilistic proof of a formula for the number of Young tableaux of a given shape , 1979 .
[4] V. Kreiman. Schubert Classes in the Equivariant K-Theory and Equivariant Cohomology of the Lagrangian Grassmannian , 2006 .
[5] Doron Zeilberger,et al. A short hook-lengths bijection inspired by the Greene-Nijenhuis-Wilf proof , 1984, Discret. Math..
[6] Greta Panova,et al. Hook formulas for skew shapes I. q-analogues and bijections , 2015, J. Comb. Theory, Ser. A.
[7] Robert A. Proctor. New Symmetric Plane Partition Identities from Invariant Theory Work of De Concini and Procesi , 1990, Eur. J. Comb..
[8] Robert A. Sulanke,et al. The Narayana distribution , 2002 .
[9] Gérard Viennot,et al. Enumeration of certain young tableaux with bounded height , 1986 .
[10] Hiroshi Naruse,et al. Excited Young diagrams and equivariant Schubert calculus , 2007 .
[11] Alexei Borodin,et al. q-Distributions on boxed plane partitions , 2009, 0905.0679.
[12] A. P. Hillman,et al. Reverse Plane Partitions and Tableau Hook Numbers , 1976, J. Comb. Theory A.
[13] Jakob Jonsson,et al. Generalized triangulations and diagonal-free subsets of stack polyominoes , 2005, J. Comb. Theory, Ser. A.
[14] H. H. Andersen,et al. Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p : independence of p , 1994 .
[15] Arthur L. B. Yang,et al. Transformations of Border Strips and Schur Function Determinants , 2004 .
[16] Bruce E. Sagan. PROBABILISTIC PROOFS OF HOOK LENGTH FORMULAS INVOLVING TREES , 2008 .
[17] Michelle L. Wachs,et al. Flagged Schur Functions, Schubert Polynomials, and Symmetrizing Operators , 1985, J. Comb. Theory, Ser. A.
[18] I. Goulden,et al. Combinatorial Enumeration , 2004 .
[19] Bruce E. Sagan,et al. A Littlewood-Richardson rule for factorial Schur functions , 1997 .
[20] Bruce E. Sagan,et al. Enumeration of Partitions with Hooklengths , 1982, Eur. J. Comb..
[21] Josef Hofbauer,et al. Communicated by the Managing Editors , 1972 .
[22] Christian Krattenthaler,et al. Bijective proofs of the hook formulas for the number of standard Young tableaux, ordinary and shifted , 1995, Electron. J. Comb..
[23] Emma Yu Jin,et al. Outside nested decompositions of skew diagrams and Schur function determinants , 2016, Eur. J. Comb..
[24] Nathan Williams,et al. Subwords and Plane Partitions , 2015 .
[25] Ilse Fischer. A bijective proof of the hook-length formula for shifted standard tableaux , 2001 .
[26] Igor Pak,et al. A direct bijective proof of the hook-length formula , 1997, Discret. Math. Theor. Comput. Sci..
[27] Matjaz Konvalinka,et al. A bijective proof of the hook-length formula for skew shapes , 2017, Electron. Notes Discret. Math..
[28] J. S. Frame,et al. The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.
[29] Ira M. Gessel,et al. Determinants, Paths, and Plane Partitions , 1989 .
[30] Igor Pak,et al. Hook length formula and geometric combinatorics. , 2001 .
[31] Kenneth H. Rosen,et al. Catalan Numbers , 2002 .
[32] Luis Serrano,et al. Maximal Fillings of Moon Polyominoes, Simplicial Complexes, and Schubert Polynomials , 2010, Electron. J. Comb..
[33] Tewodros Amdeberhan,et al. Multi-cores, posets, and lattice paths , 2014, Adv. Appl. Math..
[34] Sergi Elizalde. A bijection between 2-triangulations and pairs of non-crossing Dyck paths , 2007, J. Comb. Theory, Ser. A.
[35] H. O. Foulkes. Tangent and secant numbers and representations of symmetric groups , 1976, Discret. Math..
[36] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[37] Sergey Fomin,et al. Reduced Words and Plane Partitions , 1997 .
[38] Grigori Olshanski,et al. Shifted Schur Functions , 1996 .
[39] yuliy baryshnikov,et al. Enumeration formulas for young tableaux in a diagonal strip , 2007, 0709.0498.
[40] William Graham,et al. Excited Young diagrams, equivariant K -theory, and Schubert varieties , 2013, 1302.3009.
[41] S. Billey,et al. Kostant polynomials and the cohomology ring for G/B. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[42] B. Sagan. The Symmetric Group , 2001 .
[43] Yuval Roichman,et al. Standard Young Tableaux , 2015 .
[44] Robert A. Proctor. Shifted plane partitions of trapezoidal shape , 1983 .
[45] Emeric Deutsch,et al. An involution on Dyck paths and its consequences , 1999, Discret. Math..
[46] Alain Lascoux,et al. Ribbon Schur Functions , 1988, Eur. J. Comb..
[47] Richard P. Stanley,et al. Plane Partitions: Past, Present, and Future a , 1989 .
[48] V. Kreiman. Schubert Classes in the Equivariant K-Theory and Equivariant Cohomology of the Grassmannian , 2005 .