Proprioceptive Coupling within Motor Neurons Drives C. elegans Forward Locomotion

[1]  Jordan H. Boyle,et al.  Gait Modulation in C. elegans: An Integrated Neuromechanical Model , 2012, Front. Comput. Neurosci..

[2]  William S. Ryu,et al.  An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion , 2011, Neuron.

[3]  Michael J. O'Donovan,et al.  A Perimotor Framework Reveals Functional Segmentation in the Motoneuronal Network Controlling Locomotion in Caenorhabditis elegans , 2011, The Journal of Neuroscience.

[4]  S. Lockery,et al.  An Image-Free Opto-Mechanical System for Creating Virtual Environments and Imaging Neuronal Activity in Freely Moving Caenorhabditis elegans , 2011, PloS one.

[5]  J. Kaplan,et al.  A Neuropeptide-Mediated Stretch Response Links Muscle Contraction to Changes in Neurotransmitter Release , 2011, Neuron.

[6]  O. Kiehn Development and functional organization of spinal locomotor circuits , 2011, Current Opinion in Neurobiology.

[7]  J. T. Hackett,et al.  Neuronal control of swimming behavior: Comparison of vertebrate and invertebrate model systems , 2011, Progress in Neurobiology.

[8]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[9]  Aravinthan D. T. Samuel,et al.  Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans , 2010, Proceedings of the National Academy of Sciences.

[10]  Michael J. O'Donovan,et al.  Motoneurons Dedicated to Either Forward or Backward Locomotion in the Nematode Caenorhabditis elegans , 2010, The Journal of Neuroscience.

[11]  L. Looger,et al.  The Role of the TRP Channel NompC in Drosophila Larval and Adult Locomotion , 2010, Neuron.

[12]  Sharad Ramanathan,et al.  Optical interrogation of neural circuits in Caenorhabditis elegans , 2009, Nature Methods.

[13]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[14]  T. Stankowich Behavior , 2009, The Quarterly Review of Biology.

[15]  N. Cohen,et al.  Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait , 2009, HFSP journal.

[16]  M. Zhen,et al.  Optogenetic analysis of synaptic function , 2008, Nature Methods.

[17]  P. Sauvage Étude de la locomotion de C. elegans et perturbations mécaniques du mouvement , 2007 .

[18]  Cori Bargmann,et al.  Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans , 2007, Nature Methods.

[19]  Damon A. Clark,et al.  Temporal Activity Patterns in Thermosensory Neurons of Freely Moving Caenorhabditis elegans Encode Spatial Thermal Gradients , 2007, The Journal of Neuroscience.

[20]  John B. Thomas,et al.  A sensory feedback circuit coordinates muscle activity in Drosophila , 2007, Molecular and Cellular Neuroscience.

[21]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[22]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[23]  Yuh Nung Jan,et al.  Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae , 2007, Proceedings of the National Academy of Sciences.

[24]  Beth L. Chen Neuronal Network of C. elegans: from Anatomy to Behavior , 2007 .

[25]  M. Hagiwara,et al.  Transgenic alternative-splicing reporters reveal tissue-specific expression profiles and regulation mechanisms in vivo , 2006, Nature Methods.

[26]  O. Kiehn Locomotor circuits in the mammalian spinal cord. , 2006, Annual review of neuroscience.

[27]  P. Sternberg,et al.  A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue , 2006, Nature.

[28]  Qiang Liu,et al.  Low Conductance Gap Junctions Mediate Specific Electrical Coupling in Body-wall Muscle Cells of Caenorhabditis elegans* , 2006, Journal of Biological Chemistry.

[29]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[30]  W. O. Friesen,et al.  Entrainment of leech swimming activity by the ventral stretch receptor , 2004, Journal of Comparative Physiology A.

[31]  P. Wallén,et al.  The neuronal correlate of locomotion in fish , 1980, Experimental Brain Research.

[32]  Keir G Pearson,et al.  Generating the walking gait: role of sensory feedback. , 2004, Progress in brain research.

[33]  S. Grillner The motor infrastructure: from ion channels to neuronal networks , 2003, Nature Reviews Neuroscience.

[34]  S. Grillner,et al.  Fast and slow locomotor burst generation in the hemispinal cord of the lamprey. , 2003, Journal of neurophysiology.

[35]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[36]  S. Grillner,et al.  Cellular bases of a vertebrate locomotor system–steering, intersegmental and segmental co-ordination and sensory control , 2002, Brain Research Reviews.

[37]  J. Ahringer,et al.  The C. elegans even-skipped homologue, vab-7, specifies DB motoneurone identity and axon trajectory. , 2002, Development.

[38]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[39]  Xintian Yu,et al.  Sensory modification of leech swimming: interactions between ventral stretch receptors and swim-related neurons , 2001, Journal of Comparative Physiology A.

[40]  W. O. Friesen,et al.  Sensory Modification of Leech Swimming: Rhythmic Activity of Ventral Stretch Receptors Can Change Intersegmental Phase Relationships , 2000, The Journal of Neuroscience.

[41]  Lawrence Salkoff,et al.  Mutants of a Temperature-Sensitive Two-P Domain Potassium Channel , 2000, The Journal of Neuroscience.

[42]  E. Jorgensen,et al.  UNC-13 is required for synaptic vesicle fusion in C. elegans , 1999, Nature Neuroscience.

[43]  A. V. Maricq,et al.  Neuronal Control of Locomotion in C. elegans Is Modified by a Dominant Mutation in the GLR-1 Ionotropic Glutamate Receptor , 1999, Neuron.

[44]  E. Jorgensen,et al.  One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction , 1999, Nature Neuroscience.

[45]  W. Otto Friesen,et al.  Sensory Feedback Can Coordinate the Swimming Activity of the Leech , 1999, The Journal of Neuroscience.

[46]  H. Horvitz,et al.  The Caenorhabditis elegans Gene unc-25Encodes Glutamic Acid Decarboxylase and Is Required for Synaptic Transmission But Not Synaptic Development , 1999, The Journal of Neuroscience.

[47]  Nektarios Tavernarakis,et al.  unc-8, a DEG/ENaC Family Member, Encodes a Subunit of a Candidate Mechanically Gated Channel That Modulates C. elegans Locomotion , 1997, Neuron.

[48]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[49]  K. Pearson Proprioceptive regulation of locomotion , 1995, Current Opinion in Neurobiology.

[50]  D. Vassilatis,et al.  Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans , 1994, Nature.

[51]  A. McClellan,et al.  Mechanosensory inputs to the central pattern generators for locomotion in the lamprey spinal cord: resetting, entrainment, and computer modeling. , 1993, Journal of neurophysiology.

[52]  H. Horvitz,et al.  The GABAergic nervous system of Caenorhabditis elegans , 1993, Nature.

[53]  R. Hosono [The nervous system of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[54]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[55]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[56]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  Pearce Ra,et al.  Intersegmental coordination of leech swimming: comparison of in situ and isolated nerve cord activity with body wall movement. , 1984 .

[58]  W. O. Friesen,et al.  Intersegmental coordination of leech swimming: comparison of in situ and isolated nerve cord activity with body wall movement , 1984, Brain Research.

[59]  S. Grillner,et al.  The edge cell, a possible intraspinal mechanoreceptor. , 1984, Science.

[60]  P. Wallén,et al.  Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal. , 1984, The Journal of physiology.

[61]  F. Delcomyn Neural basis of rhythmic behavior in animals. , 1980, Science.

[62]  W. Kristan,et al.  Rhythmic swimming activity in neurones of the isolated nerve cord of the leech. , 1976, The Journal of experimental biology.

[63]  S. Brenner,et al.  The structure of the ventral nerve cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[64]  T. Brown The intrinsic factors in the act of progression in the mammal , 1911 .