A Stroboscopic Numerical Method for Highly Oscillatory Problems

We suggest a method for the integration of highly oscillatory systems with a single high frequency. The new method may be seen as a purely numerical way of implementing the analytical technique of stroboscopic averaging. The technique may be easily implemented in combination with standard software and may be applied with variable step sizes. Numerical experiments show that the suggested algorithms may be substantially more efficient than standard numerical integrators.

[1]  J. M. Sanz-Serna,et al.  Modulated Fourier expansions and heterogeneous multiscale methods , 2009 .

[2]  Björn Engquist,et al.  A multiscale method for highly oscillatory ordinary differential equations with resonance , 2008, Math. Comput..

[3]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[4]  Manuel Calvo,et al.  Approximate compositions of a near identity map by multi-revolution Runge-Kutta methods , 2004, Numerische Mathematik.

[5]  Linda R. Petzold,et al.  Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.

[6]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[7]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[8]  Jesús María Sanz-Serna,et al.  Higher-Order Averaging, Formal Series and Numerical Integration I: B-series , 2010, Found. Comput. Math..

[9]  Björn Engquist,et al.  Heterogeneous multiscale methods for stiff ordinary differential equations , 2005, Math. Comput..

[10]  A. Murua Formal series and numerical integrators, part I: Systems of ODEs and symplectic integrators , 1999 .

[11]  E. Weinan Analysis of the heterogeneous multiscale method for ordinary differential equations , 2003 .

[12]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[13]  U. Kirchgraber,et al.  An ODE-solver based on the method of averaging , 1988 .

[14]  Björn Engquist,et al.  Multiple Time Scale Numerical Methods for the Inverted Pendulum Problem , 2005 .

[15]  J. M. Sanz-Serna,et al.  Heterogeneous Multiscale Methods for Mechanical Systems with Vibrations , 2010, SIAM J. Sci. Comput..

[16]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[17]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .