A Stroboscopic Numerical Method for Highly Oscillatory Problems
暂无分享,去创建一个
J. M. Sanz-Serna | Ander Murua | Philippe Chartier | M. P. Calvo | M. Calvo | A. Murua | P. Chartier | J. Sanz-Serna
[1] J. M. Sanz-Serna,et al. Modulated Fourier expansions and heterogeneous multiscale methods , 2009 .
[2] Björn Engquist,et al. A multiscale method for highly oscillatory ordinary differential equations with resonance , 2008, Math. Comput..
[3] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[4] Manuel Calvo,et al. Approximate compositions of a near identity map by multi-revolution Runge-Kutta methods , 2004, Numerische Mathematik.
[5] Linda R. Petzold,et al. Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.
[6] E Weinan,et al. Heterogeneous multiscale methods: A review , 2007 .
[7] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[8] Jesús María Sanz-Serna,et al. Higher-Order Averaging, Formal Series and Numerical Integration I: B-series , 2010, Found. Comput. Math..
[9] Björn Engquist,et al. Heterogeneous multiscale methods for stiff ordinary differential equations , 2005, Math. Comput..
[10] A. Murua. Formal series and numerical integrators, part I: Systems of ODEs and symplectic integrators , 1999 .
[11] E. Weinan. Analysis of the heterogeneous multiscale method for ordinary differential equations , 2003 .
[12] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[13] U. Kirchgraber,et al. An ODE-solver based on the method of averaging , 1988 .
[14] Björn Engquist,et al. Multiple Time Scale Numerical Methods for the Inverted Pendulum Problem , 2005 .
[15] J. M. Sanz-Serna,et al. Heterogeneous Multiscale Methods for Mechanical Systems with Vibrations , 2010, SIAM J. Sci. Comput..
[16] F. Verhulst,et al. Averaging Methods in Nonlinear Dynamical Systems , 1985 .
[17] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .