The quantum N-body problem

This selective review is written as an introduction to the mathematical theory of the Schrodinger equation for N particles. Characteristic for these systems are the cluster properties of the potential in configuration space, which are expressed in a simple geometric language. The methods developed over the last 40 years to deal with this primary aspect are described by giving full proofs of a number of basic and by now classical results. The central theme is the interplay between the spectral theory of N-body Hamiltonians and the space–time and phase-space analysis of bound states and scattering states.

[1]  V. Efimov,et al.  ENERGY LEVELS ARISING FROM RESONANT TWO-BODY FORCES IN A THREE-BODY SYSTEM. , 1970 .

[2]  B. Simon,et al.  Dilation analyticity in constant electric field , 1981 .

[3]  Perturbation of embedded eigenvalues in the generalizedN-body problem , 1989 .

[4]  J. Combes,et al.  A class of analytic perturbations for one-body Schrödinger Hamiltonians , 1971 .

[5]  E. Mourre Absence of singular continuous spectrum for certain self-adjoint operators , 1981 .

[6]  W. Hunziker,et al.  Stability of Schrödinger eigenvalue problems , 1982 .

[7]  E. Skibsted Propagation estimates forN-body Schroedinger operators , 1991 .

[8]  J. S. Møller An abstract radiation condition and applications to N-body systems , 2000 .

[9]  A. Soffer,et al.  The N-particle scattering problem: asymptotic completeness for short-range systems , 1987 .

[10]  A. Orth Quantum mechanical resonance and limiting absorption: The many body problem , 1990 .

[11]  M. Zworski,et al.  Scattering metrics and geodesic flow at infinity , 1996 .

[12]  M. Griesemer N-Body quantum systems with singular potentials , 1998 .

[13]  I. Łaba,et al.  Scattering theory for $N$-particle systems in constant magnetic fields , 1994 .

[14]  K. Hepp,et al.  ON THE QUANTUM MECHANICAL N-BODY PROBLEM. , 1968 .

[15]  J. Dollard Asymptotic Convergence and the Coulomb Interaction , 1964 .

[16]  A. J. O'Connor Exponential decay of bound state wave functions , 1973 .

[17]  C. Winter Theory of finite systems of particles , 1964 .

[18]  B. Simon,et al.  Spectral analysis of N-body Schrodinger operators * , 1981 .

[19]  C. Gérard Sharp propagation estimates for $N$-particle systems , 1992 .

[20]  C. Fefferman The N-body problem in quantum mechanics , 1986 .

[21]  J. V. Noble,et al.  EFIMOV'S EFFECT: A NEW PATHOLOGY OF THREE-PARTICLE SYSTEMS. II. , 1972 .

[22]  I. Herbst,et al.  Exponential bounds and absence of positive eigenvalues forN-body Schrödinger operators , 1982 .

[23]  A Proof of asymptotic completeness for n-body schrodinödinger operators , 1994 .

[24]  C. Putnam,et al.  Commutation Properties of Hilbert Space Operators and Related Topics , 1967 .

[25]  J. V. Noble,et al.  On Efimov's effect: A new pathology of three-particle systems , 1971 .

[26]  M. Merkli,et al.  A Time-Dependent Theory of Quantum Resonances , 1999 .

[27]  I. Herbst Dilation analyticity in constant electric field , 1979 .

[28]  P. Blanchard,et al.  Dynamics and Processes , 1983 .

[29]  R. Lavine Commutators and scattering theory , 1971 .

[30]  I. Sigal Complex transformation method and resonances in one-body quantum systems , 1984 .

[31]  A. B. D. Monvel,et al.  C[0]-groups, commutator methods and spectral theory of N-Body Hamiltonians , 1996 .

[32]  J. Combes,et al.  Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions , 1971 .

[33]  Barry Simon,et al.  Resonances in n-Body Quantum Systems With Dilatation Analytic Potentials and the Foundations of Time-Dependent Perturbation Theory , 1973 .

[34]  W. Amrein,et al.  Characterization of bound states and scattering states in quantum mechanics , 1973 .

[35]  H. Cycon Resonances defined by modified dilatations , 1985 .

[36]  M. Ruskai Absence of discrete spectrum in highly negative ions , 1982 .

[37]  I. Sigal,et al.  MINIMAL ESCAPE VELOCITIES , 2000, math-ph/0002013.

[38]  J. Kovalevsky,et al.  Lectures in celestial mechanics , 1989 .

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  David Ruelle,et al.  A remark on bound states in potential-scattering theory , 1969 .

[41]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[42]  L. Thomas,et al.  Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators , 1973 .

[43]  P. Perry Exponential bounds and semi-finiteness of point spectrum forN-body Schrödinger operators , 1984 .

[44]  V. Enss Asymptotic completeness for quantum mechanical potential scattering , 1978 .

[45]  Israel Michael Sigal,et al.  Asymptotics of the ground state energies of large Coulomb systems , 1993 .

[46]  E. Lieb The Stability of Matter: From Atoms to Stars , 2001 .

[47]  V. Enss A note on Hunziker's theorem , 1977 .

[48]  Tosio Kato Perturbation theory for linear operators , 1966 .

[49]  R. Iório,et al.  Asymptotic completeness for multi-particle schroedinger Hamiltonians with weak potentials , 1972 .

[50]  V. Matveev,et al.  Wave operators for the Schroedinger equation with a slowly decreasing potential , 1970 .

[51]  A. Jensen High energy resolvent estimates for Schrödinger operators in Besov spaces , 1992 .

[52]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[53]  Tosio Kato Fundamental properties of Hamiltonian operators of Schrödinger type , 1951 .

[54]  M. Klaus,et al.  Coupling constant thresholds in nonrelativistic quantum mechanics , 1980 .

[55]  I. Sigal Geometric theory of Stark resonances in multielectron systems , 1988 .

[56]  M. Hack Wave operators in multichannel scattering , 1959 .

[57]  A. Soffer,et al.  Time Dependent Resonance Theory , 1998 .

[58]  I. Sigal,et al.  Time-Dependent Scattering Theory of N-Body Quantum Systems , 2000 .

[59]  H. Tamura,et al.  Asymptotic completeness for long-range many-particle systems with Stark effect. II , 1995 .

[60]  H. Tamura Asymptotic completeness for n–body schrödinger operators with short–range interactions , 1991 .

[61]  I. Sigal Geometric methods in the quantum many-body problem. Nonexistence of very negative ions , 1982 .

[62]  A. Vasy Propagation of singularities in three-body scattering , 1997 .

[63]  H. Isozaki A generalization of the radiation condition of Sommerfeld for $N$-body Schrödinger operators , 1994 .

[64]  G. Zhislin,et al.  Finiteness of the discrete spectrum of many-particle Hamiltonians in symmetry spaces , 1977 .

[65]  A. Ramm,et al.  Spectral and scattering theory , 2020 .

[66]  P. Deift,et al.  A time-dependent approach to the completeness of multiparticle quantum systems , 1977 .

[67]  A. Jensen,et al.  Multiple commutator estimates and resolvent smoothness in quantum scattering theory , 1984 .

[68]  G. M. Graf Asymptotic completeness forN-body short-range quantum systems: A new proof , 1990 .

[69]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.

[70]  H. Isozaki,et al.  N-body resolvent estimates , 1996 .

[71]  Andrew Hassell Distorted plane waves for the 3 body Schrödinger operator , 2000 .

[72]  O. Yakubovsky On the Integral equations in the theory o N particle scattering , 1966 .

[73]  J. D. ski Asymptotic completeness of long-range N-body quantum systems , 1993 .