Numerical Treatment of Homogeneous Semi-Markov Processes in Transient Case–a Straightforward Approach
暂无分享,去创建一个
[1] Jacques Janssen,et al. Numerical Solution of non-Homogeneous Semi-Markov Processes in Transient Case* , 2001 .
[2] Ronald A. Howard,et al. Dynamic Probabilistic Systems , 1971 .
[3] P. Neumann. W. Freiberger und U. Grenander, A Short Course in Computational Probability and Statistics. (Applied Mathematical Sciences, Vol. 6). XII + 155 S. m. 35 Fig. Berlin/Heidelberg/New York 1971. Springer-Verlag. Preis brosch. DM 24,— , 1973 .
[4] Ulf Grenander,et al. A Short Course In Computational Probability And Statistics , 1971 .
[5] Raimondo Manca,et al. A computational procedure for the asymptotic analysis of homogeneous semi-Markov processes , 1984 .
[6] M. A. Wortman,et al. On Numerical Solution of the Markov Renewal Equation: Tight Upper and Lower Kernel Bounds , 2001 .
[7] Raimondo Manca,et al. An algorithmic approach to non-homogeneous semi-markov processes , 1984 .
[8] R. Taylor,et al. The Numerical Treatment of Integral Equations , 1978 .
[9] Attila Csenki,et al. Dependability for Systems with a Partitioned State Space: Markov and Semi-Markov Theory and Computational Implementation , 1994 .
[10] F. Riesz,et al. Les systèmes d'équations linéaires : a une infinité d'inconnues , 1952 .
[11] R. Pyke. Markov Renewal Processes with Finitely Many States , 1961 .
[12] Erhan Çinlar,et al. Introduction to stochastic processes , 1974 .