A FEM model for the active control of curved FGM shells using piezoelectric sensor/actuator layers

In this paper, a generic finite element formulation is developed for the static and dynamic control of FGM (functionally graded material) shells with piezoelectric sensor and actuator layers. The properties of the FGM shell are graded in the thickness direction according to a volume fraction power-law distribution. The proposed finite element model is based on variational principle and linear piezoelectricity theory. A constant displacement and velocity feedback control algorithm coupling the direct and inverse piezoelectric effects is applied in a closed-loop system to provide feedback control of the integrated FGM shell structure. Both static and dynamic control of FGM shells are simulated to demonstrate the effectiveness of the proposed active control scheme within a framework of finite element discretization and piezoelectric integration.

[1]  J. N. Reddy,et al.  On laminated composite plates with integrated sensors and actuators , 1999 .

[2]  L. Kollár,et al.  Shape Control of Composite Plates and Shells with Embedded Actuators. II. Desired Shape Specified , 1994 .

[3]  Richard L. Williamson,et al.  Finite element analysis of thermal residual stresses at graded ceramic‐metal interfaces. Part I. Model description and geometrical effects , 1993 .

[4]  T. Bailey,et al.  Nonlinear Control of a Distributed System: Simulation and Experimental Results , 1987 .

[5]  H. S. Tzou,et al.  Analysis of piezoelastic structures with laminated piezoelectric triangle shell elements , 1996 .

[6]  H. F. Tiersten,et al.  Linear Piezoelectric Plate Vibrations , 1969 .

[7]  Dimitris A. Saravanos,et al.  Mixed Laminate Theory and Finite Element for Smart Piezoelectric Composite Shell Structures , 1997 .

[8]  Dimitris A. Saravanos,et al.  Layerwise mechanics and finite element model for laminated piezoelectric shells , 1996 .

[9]  C. I. Tseng,et al.  Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach , 1990 .

[10]  J. N. Reddy,et al.  THERMOMECHANICAL ANALYSIS OF FUNCTIONALLY GRADED CYLINDERS AND PLATES , 1998 .

[11]  K. Chandrashekhara,et al.  Dynamic Modeling and Neural Control of Composite Shells Using Piezoelectric Devices , 1998 .

[12]  J. N. Reddy,et al.  Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates , 1998 .

[13]  R. Lammering,et al.  The application of a finite shell element for composites containing piezo-electric polymers in vibration control , 1991 .

[14]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[15]  Horn-Sen Tzou,et al.  A Piezothermoelastic Thin Shell Theory Applied to Active Structures , 1994 .

[16]  László P. Kollár,et al.  Shape Control of Composite Plates and Shells with Embedded Actuators. I. Voltages Specified , 1994 .

[17]  W. Hwang,et al.  Vibration Control of a Laminated Plate with Piezoelectric Sensor/Actuator: Finite Element Formulation and Modal Analysis , 1993 .

[18]  J. N. Reddy,et al.  Vibration of functionally graded cylindrical shells , 1999 .

[19]  K. Y. Lam,et al.  Active control of composite plates with integrated piezoelectric sensors and actuators under various dynamic loading conditions , 1999 .

[20]  Naotake Noda,et al.  Optimum material design for functionally gradient material plate , 1996 .

[21]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[22]  Horn-Sen Tzou,et al.  A Linear Theory Of Piezoelastic Shell Vibrations , 1994 .