Aeroservoelastic Design Optimization of a Flexible Wing

In this paper a multidisciplinary design optimization framework is developed that integrates control system design with aerostructural design. The equations of motion are derived for a flexible aircraft and used to perform aeroservoelastic analysis. The objective of this framework is to go beyond the current limits of aircraft performance through simultaneous design optimization of aerodynamic shape, structural sizing and control system. The control system uses load alleviation to reduce the critical structural loads. Time-domain analysis of the aircraft performing an altitude change maneuver and encountering an atmospheric gust is included in the design process. The optimal trade-off between aerodynamics, structures and control system is found by maximizing the endurance subjected to stress and maneuverability constraints. Two cases — with and without load alleviation system — are considered. Due to the proposed MDO framework, the inclusion of load alleviation system in design leads to a significant increase in endurance performance.

[1]  Joaquim R. R. A. Martins,et al.  An adaptive approach to constraint aggregation using adjoint sensitivity analysis , 2007 .

[2]  Leonard Meirovitch,et al.  Hybrid state equations of motion for flexible bodies in terms of quasi-coordinates , 1991 .

[3]  Ronald Slingerland,et al.  Drag Characteristics for Optimally Span-Loaded Planar, Wingletted, and C Wings , 2009 .

[4]  Günter H. Schnerr,et al.  Numerical Investigation of Performance Losses in a Centrifugal Pump due to Cavitation , 2001 .

[5]  T Haftka Raphael,et al.  Multidisciplinary aerospace design optimization: survey of recent developments , 1996 .

[6]  Jessica A. Woods-Vedeler,et al.  Rolling Maneuver Load Alleviation using active controls , 1992 .

[7]  Youdan Kim,et al.  Optimal wing planform design for aeroelastic control , 2000 .

[8]  Carlos E. S. Cesnik,et al.  Nonlinear Flight Dynamics of Very Flexible Aircraft , 2005 .

[9]  Joaquim R. R. A. Martins,et al.  An asymmetric suboptimization approach to aerostructural optimization , 2009 .

[10]  Masoud Rais-Rohani,et al.  Integrated aerodynamic-structural design of a transport wing , 1989 .

[11]  Carlos E. S. Cesnik,et al.  Nonlinear Aeroelasticity of a Very Flexible Blended-Wing-Body Aircraft , 2009 .

[12]  Walter A. Silva,et al.  Application of nonlinear systems theory to transonic unsteady aerodynamic responses , 1993 .

[13]  Clément Roos,et al.  Aircraft Load Alleviation During Maneuvers Using Optimal Control Surface Combinations , 2007 .

[14]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[15]  Joaquim R. R. A. Martins,et al.  Application of Model Predictive Control to Gust Loads Alleviation Systems , 2009 .

[16]  Carlos E. S. Cesnik,et al.  Trajectory Control for Very Flexible Aircraft , 2006 .

[17]  J. Sobieszczanski-Sobieski,et al.  A technique for locating function roots and for satisfying equality constraints in optimization , 1992 .

[18]  W. P. Rodden,et al.  Equations of motion of a quasisteady flight vehicle utilizing restrained static aeroelastic characteristics , 1985 .

[19]  Edmund Pendleton,et al.  Active Aeroelastic Wing Flight Research Program: Technical Program and Model Analytical Development , 2000 .

[20]  M. Anderson,et al.  An MDO approach to Control-Configured-Vehicle design , 1996 .

[21]  W. Silva,et al.  Discrete-time linear and nonlinear aerodynamic impulse responses for efficient cfd analyses , 1997 .

[22]  Dimitri N. Mavris,et al.  Integrated Trim and Structural Design Process for Active Aeroelastic Wing Technology , 2001 .

[23]  J. Alonso,et al.  A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design , 2005 .

[24]  Dimitri N. Mavris,et al.  Robust Structural Design of an Active Aeroelastic Wing with Maneuver Load Inaccuracies , 2004 .

[25]  Leonard Meirovitch,et al.  Methods of analytical dynamics , 1970 .

[26]  Joaquim R. R. A. Martins,et al.  High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet , 2002 .

[27]  Walter A. Silva,et al.  Development of Reduced-Order Models for Aeroelastic Analysis and Flutter Prediction Using the CFL3Dv6.0 Code , 2002 .

[28]  Moshe Idan,et al.  Aeroservoelastic Structural and Control Optimization Using Robust Design Schemes , 2002 .

[29]  Moshe Idan,et al.  Aeroservoelastic interaction between aircraft structural and control design schemes , 1998 .

[30]  Kamran Behdinan,et al.  Multidisciplinary Optimization Framework for Control-Configuration Integration in Aircraft Conceptual Design , 2006 .

[31]  David K. Schmidt,et al.  Modeling and simulation of flexible flight vehicles , 1998 .

[32]  Joaquim R. R. A. Martins,et al.  Aerostructural Optimization of Nonplanar Lifting Surfaces , 2010 .

[33]  Michel van Tooren,et al.  Modified Inertially Coupled Equations of Motion for a Flexible Aircraft with Coupled Vibrations , 2009 .

[34]  Philip S. Beran,et al.  Reduced-order modeling - New approaches for computational physics , 2001 .

[35]  Raphael T. Haftka,et al.  Integrated aerodynamic/structural design of a sailplane wing , 1988 .

[36]  Leonard Meirovitch,et al.  Integrated Approach to the Dynamics and Control of Maneuvering Flexible Aircraft , 2003 .

[37]  Robert C. Nelson,et al.  Flight Stability and Automatic Control , 1989 .

[38]  Dimitri N. Mavris,et al.  Reduced-Order Models Based on CFD Impulse and Step Responses , 2001 .

[39]  Mario Paz,et al.  Structural Dynamics: Theory and Computation , 1981 .

[40]  Boris Moulin,et al.  Gust Loads Alleviation Using Special Control Surfaces , 2007 .

[41]  David K. Schmidt,et al.  ON THE FLIGHT DYNAMICS OF AEROELASTIC VEHICLES , 1986 .

[42]  Eli Livne,et al.  Integrated Aeroservoelastic Optimization: Status and Direction , 1999 .

[43]  Eli Livne,et al.  Future of Airplane Aeroelasticity , 2003 .

[44]  Walter A. Silva,et al.  Development of Reduced-Order Models for Aeroelastic Analysis and Flutter Prediction Using the CFL3Dv6.0 Code , 2002 .

[45]  Ilan Kroo,et al.  Multidisciplinary Considerations in the Design of Wings and Wing Tip Devices , 2010 .

[46]  Ruben E. Perez,et al.  Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach , 2011 .

[47]  M. Karpel Procedures and Models for Aeroservoelastic Analysis and Design , 2001 .

[48]  Dewey H. Hodges,et al.  Flight Dynamics of Highly Flexible Flying Wings , 2006 .

[49]  Shinji Suzuki Simultaneous structure/control design synthesis for aero-servo-elastic system , 1993 .

[50]  S. D. Ishmael,et al.  Technical Findings, Lessons Learned, and Recommendations Resulting from the Helios Prototype Vehicle Mishap , 2007 .

[51]  Manoj Kumar Tiwari,et al.  Swarm Intelligence, Focus on Ant and Particle Swarm Optimization , 2007 .

[52]  Bernard Etkin,et al.  Dynamics of Atmospheric Flight , 1972 .