Non-conventional Materials for Machine Tool Structures

Non-conventional materials are the emerging demand for machine tool structures, while smooth operations have been hindered due to vibration and thermal deformation of machine tool structures, especially in precision machining. This paper attempts to review and summarize the key developments in the area of non-conventional materials for machine tool structures over the last two decades. Many beneficial properties of the machine tool structural materials are compared with the conventional cast iron. To support the ever-rising working speeds made possible by the development of tools and machining processes, the increasing requirements concerning the surface finish of the machined workpieces and the fabrication cost of the machine tool structures exerted the impetus to find alternatives to cast iron. Based on the results of previous studies, composite materials may be the paragon.

[1]  Satish B. S. Rao,et al.  Metal Cutting Machine Tool Design—A Review , 1997 .

[2]  M. A. Mansur,et al.  Evaluation of Advanced Cementitious Composites for Machine-Tool Structures , 1988 .

[3]  Y. Ohama,et al.  POLYMER-BASED ADMIXTURES , 1998 .

[4]  Muhammad Ekhlasur Rahman,et al.  Design, fabrication and evaluation of a steel fibre reinforced concrete column for grinding machines , 1995 .

[5]  Y. Ohama,et al.  Recent progress in concrete-polymer composites , 1997 .

[6]  Surendra P. Shah,et al.  Fiber-Reinforced Cement Composites , 1992 .

[7]  P. A. McKeown,et al.  Materials for Machine Tool Structures , 1980 .

[8]  Nemkumar Banthia,et al.  Fracture toughness of micro-fiber reinforced cement composites , 1996 .

[9]  W. D. Ambrose,et al.  Design, fabrication and performance of a ferrocement machine tool bed , 1987 .

[10]  Ataullah Khan,et al.  DEVELOPMENT AND CHARACTERIZATION OF HYBRID POLYETHYLENE FIBER REINFORCED CEMENT COMPOSITES , 1993 .

[11]  Parviz Soroushian,et al.  MECHANICAL PROPERTIES OF CONCRETE MATERIALS REINFORCED WITH POLYPROPYLENE OR POLYETHYLENE FIBERS , 1992 .

[12]  J. D. Smith,et al.  Machine-Tool Dynamics: An Introduction , 1970 .

[13]  Dai Gil Lee,et al.  Design and manufacture of a three-axis ultra-precision CNC grinding machine , 1997 .

[14]  V. Li PERFORMANCE DRIVEN DESIGN OF FIBER REINFORCED CEMENTITIOUS COMPOSITES , 1992 .

[15]  Koji Takada,et al.  Thermal Deformation of Machine Tool Structures Using Epoxy Resin Concrete , 1986 .

[16]  N. Banthia,et al.  Micro-Reinforced Cementitious Materials , 1990 .

[17]  A. H. Slocum,et al.  Precision machine design: macromachine design philosophy and its applicability to the design of micromachines , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.

[18]  D.D.L. Chung,et al.  Improving the vibration damping capacity of cement , 1998 .

[19]  Muhammad Ekhlasur Rahman,et al.  Development and evaluation of ferrocement legs for a lathe , 1990 .

[20]  D.D.L. Chung,et al.  Vibration damping admixtures for cement , 1996 .

[21]  Dai Gil Lee,et al.  Damping improvement of machine tool columns with polymer matrix fiber composite material , 1998 .

[22]  Yuji Furukawa,et al.  Development of Ultra Precision Machine Tool Made of Ceramics , 1986 .

[23]  P. Menz,et al.  Lightweight construction for machine tools and robots , 2000 .

[24]  A. M. Brandt Cement-based Composites: Materials, Mechanical Properties and Performance , 1995 .

[25]  Mirror surface grinding of ceramics using a three-axis precision cnc grinding machine , 1997 .

[26]  M. A. Mansur,et al.  Ferrocement as a machine tool bed , 1989 .