EFFECT OF ELEMENT DISTORTION ON THE NUMERICAL DISPERSION OF SPECTRAL ELEMENT METHODS

Spectral elements are well established in the field of computational seismology, specially because they inherit the flexibility of finite element methods and have low numerical dispersion error. The latter is experimentally acknowledged, but is theoretically known in limited cases, such as Cartesian meshes [2]. It is well known that a finite element mesh can contain distorted elements that generate numerical errors for very large distortion. In the present work we study the effect of element distortion on the numerical dispersion error and determine the distortion range in which an accurate solution is obtained with a given error tolerance. We consider spectral elements for the 2D acoustic wave equation ¨(x,t) = c 2 u(x,t). Let us write its semi-dicretization in space in the form M ¨ u (t) + c 2 Ku = 0, where u p(t) u(xp,t) and M,K are the mass and stiffness matrices, respectively. Plugging into this system a harmonic plane wave u (t) = exp( i! t)w, wp = exp(i · xp), we find

[1]  A. F. Emery,et al.  The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements , 2000 .

[2]  Mrinal K. Sen,et al.  Short CommunicationComment on “Dispersion analysis of spectral element methods for elastic wave propagation” by G. Seriani and S.P. Oliveira , 2009 .

[3]  Qing Huo Liu,et al.  Higher-Order Numerical Methods for Transient Wave Equations , 2003 .

[4]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[5]  Peter M. Pinsky,et al.  Finite element dispersion analysis for the three‐dimensional second‐order scalar wave equation , 1992 .

[6]  Géza Seriani,et al.  Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .

[7]  Jean-Pierre Vilotte,et al.  Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids , 2003 .

[8]  Reply to comment on “Dispersion analysis of spectral element methods for elastic wave propagation” , 2009 .

[9]  Wagdi G. Habashi,et al.  Spectral Element Method for Linear Fan Tone Noise Radiation , 2004 .

[10]  S. P. Oliveira,et al.  Dispersion analysis of spectral element methods for elastic wave propagation , 2008 .

[11]  Mrinal K. Sen,et al.  Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations , 2007 .

[12]  M. Christon The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation , 1999 .

[13]  Géza Seriani,et al.  Numerical simulation of interface waves by high‐order spectral modeling techniques , 1992 .

[14]  Enrico Priolo,et al.  2D numerical simulations of earthquake ground motion: examples from the Marche Region, Italy , 2008 .

[15]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[16]  DFT modal analysis of spectral element methods for the 2D elastic wave equation , 2010, J. Comput. Appl. Math..

[17]  S. P. Oliveira,et al.  DFT MODAL ANALYSIS OF SPECTRAL ELEMENT METHODS FOR ACOUSTIC WAVE PROPAGATION , 2008 .

[18]  D. White Numerical dispersion of a vector finite element method on skewed hexahedral grids , 2000 .

[19]  Henk A. van der Vorst,et al.  Alternatives to the Rayleigh Quotient for the Quadratic Eigenvalue Problem , 2003, SIAM J. Sci. Comput..

[20]  A. Żak,et al.  A novel formulation of a spectral plate element for wave propagation in isotropic structures , 2009 .

[21]  Anthony T. Patera,et al.  An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry , 1986 .

[22]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[23]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[24]  Patrick Joly,et al.  Higher-order finite elements with mass-lumping for the 1D wave equation , 1994 .

[25]  Enrico Priolo,et al.  2-D spectral element simulations of destructive ground shaking in Catania (Italy) , 1999 .

[26]  Jean-Pierre Vilotte,et al.  Triangular Spectral Element simulation of two-dimensional elastic wave propagation using unstructured triangular grids , 2006 .

[27]  Jens Markus Melenk,et al.  Fully discrete hp-finite elements: fast quadrature , 2001 .

[28]  P. Maher,et al.  Handbook of Matrices , 1999, The Mathematical Gazette.

[29]  S. P. Oliveira,et al.  Optimal blended spectral-element operators for acoustic wave modeling , 2007 .

[30]  J. Z. Zhu,et al.  The finite element method , 1977 .

[31]  Yvon Maday,et al.  Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries , 1990 .

[32]  Michael M. J. Proot,et al.  Application of the least-squares spectral element method using Chebyshev polynomials to solve the incompressible Navier-Stokes equations , 2005, Numerical Algorithms.

[33]  W. A. Mulder,et al.  Spurious modes in finite-element discretizations of the wave equation may not be all that bad , 1999 .

[34]  Géza Seriani,et al.  Double-grid Chebyshev spectral elements for acoustic wave modeling , 2004 .

[35]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[36]  David S. Burnett,et al.  Finite Element Analysis: From Concepts to Applications , 1987 .

[37]  Shangyou Zhang Numerical integration with Taylor truncations for the quadrilateral and hexahedral finite elements , 2007 .