REFMAC5 for the refinement of macromolecular crystal structures

The general principles behind the macromolecular crystal structure refinement program REFMAC5 are described.

[1]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[2]  Pavol Skubák,et al.  Multivariate phase combination improves automated crystallographic model building. , 2010, Acta crystallographica. Section D, Biological crystallography.

[3]  Michael Levitt,et al.  Super-resolution biomolecular crystallography with low-resolution data , 2010, Nature.

[4]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[5]  Pavol Skubák,et al.  A multivariate likelihood SIRAS function for phasing and model refinement. , 2009, Acta crystallographica. Section D, Biological crystallography.

[6]  Serge X. Cohen,et al.  “Conditional Restraints”: Restraining the Free Atoms in ARP/wARP , 2009, Structure.

[7]  Mark Israel,et al.  XtalView, protein structure solution and protein graphics, a short history. , 2008, Journal of structural biology.

[8]  C. Giacovazzo,et al.  Minimally resolution biased electron-density maps. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[9]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[10]  T. Welberry,et al.  The interpretation and analysis of diffuse scattering using Monte Carlo simulation methods. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[11]  D. Stuart,et al.  Bluetongue virus VP4 is an RNA-capping assembly line , 2007, Nature Structural &Molecular Biology.

[12]  B. Golinelli‐Pimpaneau,et al.  Domain motions of glucosamine‐6P synthase: Comparison of the anisotropic displacements in the crystals and the catalytic hinge‐bending rotation , 2007, Protein science : a publication of the Protein Society.

[13]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[14]  Jay Painter,et al.  Electronic Reprint Biological Crystallography Optimal Description of a Protein Structure in Terms of Multiple Groups Undergoing Tls Motion Biological Crystallography Optimal Description of a Protein Structure in Terms of Multiple Groups Undergoing Tls Motion , 2005 .

[15]  Garib N Murshudov,et al.  Intensity statistics in twinned crystals with examples from the PDB. , 2006, Acta crystallographica. Section D, Biological crystallography.

[16]  D. Ankerst,et al.  Kendall's Advanced Theory of Statistics, Vol. 2B: Bayesian Inference , 2005 .

[17]  G. Bricogne,et al.  Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. , 2004, Acta crystallographica. Section D, Biological crystallography.

[18]  Fei Long,et al.  REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. , 2004, Acta crystallographica. Section D, Biological crystallography.

[19]  Pavol Skubák,et al.  Direct incorporation of experimental phase information in model refinement. , 2004, Acta crystallographica. Section D, Biological crystallography.

[20]  Anastassis Perrakis,et al.  Developments in the CCP4 molecular-graphics project. , 2004, Acta crystallographica. Section D, Biological crystallography.

[21]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[22]  Jan Pieter Abrahams,et al.  CRANK: new methods for automated macromolecular crystal structure solution. , 2004, Structure.

[23]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[24]  B. Ripley,et al.  Robust Statistics , 2018, Wiley Series in Probability and Statistics.

[25]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[26]  Garib N Murshudov,et al.  Fisher's information in maximum-likelihood macromolecular crystallographic refinement. , 2003, Acta crystallographica. Section D, Biological crystallography.

[27]  Thomas C. Terwilliger,et al.  Improving macromolecular atomic models at moderate resolution by automated iterative model building, statistical density modification and refinement , 2003, Acta crystallographica. Section D, Biological crystallography.

[28]  Claude Lecomte,et al.  Refinement of proteins at subatomic resolution with MOPRO , 2001 .

[29]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[30]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[31]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[32]  K. Wilson,et al.  Efficient anisotropic refinement of macromolecular structures using FFT. , 1999, Acta crystallographica. Section D, Biological crystallography.

[33]  G N Murshudov,et al.  Incorporation of prior phase information strengthens maximum-likelihood structure refinement. , 1998, Acta crystallographica. Section D, Biological crystallography.

[34]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[35]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[36]  R. Tibshirani The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.

[37]  G. Bricogne [23] Bayesian statistical viewpoint on structure determination: Basic concepts and examples. , 1997, Methods in enzymology.

[38]  D E Tronrud,et al.  TNT refinement package. , 1997, Methods in enzymology.

[39]  R. Read,et al.  Improved Structure Refinement Through Maximum Likelihood , 1996 .

[40]  A T Brünger,et al.  Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. , 1994, Journal of molecular biology.

[41]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[42]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .

[43]  D. S. Moss,et al.  TLSANL: TLS parameter-analysis program for segmented anisotropic refinement of macromolecular structures , 1993 .

[44]  D. Tronrud Conjugate-direction minimization: an improved method for the refinement of macromolecules. , 1992, Acta crystallographica. Section A, Foundations of crystallography.

[45]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[46]  Axel T. Brunger,et al.  Simulated Annealing in Crystallography , 1991 .

[47]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[48]  Axel T. Brunger,et al.  A memory-efficient fast Fourier transformation algorithm for crystallographic refinement on supercomputers , 1989 .

[49]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[50]  Brian W. Matthews,et al.  An efficient general-purpose least-squares refinement program for macromolecular structures , 1987 .

[51]  Wayne A. Hendrickson,et al.  A restrained-parameter thermal-factor refinement procedure , 1980 .

[52]  Michael Levitt,et al.  Refinement of Large Structures by Simultaneous Minimization of Energy and R Factor , 1978 .

[53]  R. C. Agarwal A new least‐squares refinement technique based on the fast Fourier transform algorithm: erratum , 1978 .

[54]  T. Eyck,et al.  Efficient structure-factor calculation for large molecules by the fast Fourier transform , 1977 .

[55]  R. Wood,et al.  Some Statistical Applications in X-Ray Crystallography , 1977 .

[56]  J. Konnert,et al.  A restrained-parameter structure-factor least-squares refinement procedure for large asymmetric units , 1976 .

[57]  F. L. Hirshfeld Can X‐ray data distinguish bonding effects from vibrational smearing? , 1976 .

[58]  R. Diamond A real-space refinement procedure for proteins , 1971 .

[59]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[60]  E. Lattman,et al.  Representation of phase probability distributions for simplified combination of independent phase information , 1970 .

[61]  K. N. Trueblood,et al.  On the rigid-body motion of molecules in crystals , 1968 .

[62]  Probability distribution connected with structure amplitudes of two related crystals. V. The effect of errors in the atomic coordinates on the distribution of observed and calculated structure factors , 1965 .

[63]  G. N. Ramachandran,et al.  Probability distribution connected with structure amplitude of two related crystals. I. Probability distribution of the difference , 1963 .

[64]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[65]  D. Cruickshank The determination of the anisotropic thermal motion of atoms in crystals , 1956 .

[66]  V. Luzzati,et al.  Traitement statistique des erreurs dans la determination des structures cristallines , 1952 .

[67]  D. Cruickshank On the relations between Fourier and least‐squares methods of structure determination , 1952 .

[68]  V. Luzzati Sur la convergence et l'erreur dans les structures non‐centrosymétriques , 1951 .

[69]  W. Cochran The Fourier method of crystal‐structure analysis , 1948 .

[70]  A. Booth The accuracy of atomic co-ordinates derived from Fourier series in X-ray structure analysis , 1946, Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences.