Activation and targeting of ATG8 protein lipidation

[1]  M. Tschan,et al.  Progress and Challenges in the Use of MAP1LC3 as a Legitimate Marker for Measuring Dynamic Autophagy In Vivo , 2020, Cells.

[2]  A. Prescott,et al.  A conserved ATG2‐GABARAP family interaction is critical for phagophore formation , 2020, EMBO reports.

[3]  A. Ryo,et al.  Streptococcus pneumoniae triggers hierarchical autophagy through reprogramming of LAPosome-like vesicles via NDP52-delocalization , 2020, Communications Biology.

[4]  P. Giavalisco,et al.  Local Fatty Acid Channeling into Phospholipid Synthesis Drives Phagophore Expansion during Autophagy , 2019, Cell.

[5]  Hector H. Huang,et al.  The LC3-Conjugation Machinery Specifies the Loading of RNA-Binding Proteins into Extracellular Vesicles , 2019, Nature Cell Biology.

[6]  G. Juhász,et al.  Autophagosome-lysosome fusion. , 2020, Journal of molecular biology.

[7]  S. Martens,et al.  Recruitment and Activation of the ULK1/Atg1 Kinase Complex in Selective Autophagy , 2020, Journal of molecular biology.

[8]  T. Lamark,et al.  Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. , 2020, Journal of molecular biology.

[9]  Michael J. Munson,et al.  Lipids and lipid-binding proteins in selective autophagy. , 2020, Journal of molecular biology.

[10]  N. Mizushima The ATG conjugation systems in autophagy. , 2019, Current opinion in cell biology.

[11]  J. Hurley,et al.  A PI3K-WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagy , 2019, bioRxiv.

[12]  J. Mima,et al.  Curvature-sensitive trans-assembly of human Atg8-family proteins in autophagy-related membrane tethering , 2019, bioRxiv.

[13]  K. Lidke,et al.  Galectin-3 Coordinates a Cellular System for Lysosomal Repair and Removal. , 2019, Developmental cell.

[14]  V. Deretic,et al.  Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs , 2019, The EMBO journal.

[15]  V. Rogov,et al.  A Diversity of Selective Autophagy Receptors Determines the Specificity of the Autophagy Pathway. , 2019, Molecular cell.

[16]  D. Klionsky,et al.  A switch element in the autophagy E2 Atg3 mediates allosteric regulation across the lipidation cascade , 2019, Nature Communications.

[17]  Lin Li,et al.  A Bacterial Effector Reveals the V-ATPase-ATG16L1 Axis that Initiates Xenophagy , 2019, Cell.

[18]  D. Green,et al.  LC3-Associated Endocytosis Facilitates β-Amyloid Clearance and Mitigates Neurodegeneration in Murine Alzheimer’s Disease , 2019, Cell.

[19]  R. Vierstra,et al.  ATG8-Binding UIM Proteins Define a New Class of Autophagy Adaptors and Receptors , 2019, Cell.

[20]  Elsje G. Otten,et al.  The Cargo Receptor NDP52 Initiates Selective Autophagy by Recruiting the ULK Complex to Cytosol-Invading Bacteria , 2019, Molecular cell.

[21]  G. Schiavo,et al.  Spatiotemporal Control of ULK1 Activation by NDP52 and TBK1 during Selective Autophagy , 2019, Molecular cell.

[22]  J. Hurley,et al.  FIP200 Claw Domain Binding to p62 Promotes Autophagosome Formation at Ubiquitin Condensates , 2019, Molecular cell.

[23]  J. Marsh,et al.  Intrinsic lipid binding activity of ATG16L1 supports efficient membrane anchoring and autophagy , 2019, The EMBO journal.

[24]  G. Evjen,et al.  Members of the autophagy class III phosphatidylinositol 3-kinase complex I interact with GABARAP and GABARAPL1 via LIR motifs , 2019, Autophagy.

[25]  H. Hirano,et al.  Two distinct mechanisms target the autophagy-related E3 complex to the pre-autophagosomal structure , 2019, eLife.

[26]  D. Green,et al.  LC3-associated phagocytosis at a glance , 2019, Journal of Cell Science.

[27]  T. Yoshimori,et al.  Distinct functions of ATG16L1 isoforms in membrane binding and LC3B lipidation in autophagy-related processes , 2019, Nature Cell Biology.

[28]  Leann Nguyen,et al.  LC3/GABARAPs drive ubiquitin-independent recruitment of Optineurin and NDP52 to amplify mitophagy , 2019, Nature Communications.

[29]  O. Florey,et al.  The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis , 2018, Autophagy.

[30]  Jennifer Martinez LAP it up, fuzz ball: a short history of LC3-associated phagocytosis. , 2018, Current opinion in immunology.

[31]  R. Xavier,et al.  An ATG16L1-dependent pathway promotes plasma membrane repair and limits Listeria monocytogenes cell-to-cell spread , 2018, Nature Microbiology.

[32]  G. Fazeli,et al.  C. elegans Blastomeres Clear the Corpse of the Second Polar Body by LC3-Associated Phagocytosis. , 2018, Cell reports.

[33]  F. Reggiori,et al.  Coordination of Autophagosome–Lysosome Fusion by Atg8 Family Members , 2018, Current Biology.

[34]  T. Melia,et al.  Delipidation of mammalian Atg8-family proteins by each of the four ATG4 proteases , 2018, Autophagy.

[35]  K. Lidke,et al.  Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins , 2018, The Journal of cell biology.

[36]  F. Reggiori,et al.  Molecular mechanism to target the endosomal Mon1-Ccz1 GEF complex to the pre-autophagosomal structure , 2018, eLife.

[37]  J. Zuber,et al.  The IAP family member BRUCE regulates autophagosome–lysosome fusion , 2018, Nature Communications.

[38]  S. Tooze,et al.  A molecular perspective of mammalian autophagosome biogenesis , 2018, The Journal of Biological Chemistry.

[39]  O. Florey,et al.  The WD40 domain of ATG16L1 is required for its non‐canonical role in lipidation of LC3 at single membranes , 2018, The EMBO journal.

[40]  Matthew D. Smith,et al.  CCPG1 Is a Non-canonical Autophagy Cargo Receptor Essential for ER-Phagy and Pancreatic ER Proteostasis , 2017, Developmental cell.

[41]  J. Côté,et al.  Atg5 Disassociates the V1V0-ATPase to Promote Exosome Production and Tumor Metastasis Independent of Canonical Macroautophagy. , 2017, Developmental cell.

[42]  D. Green,et al.  LC3-Associated Phagocytosis and Inflammation. , 2017, Journal of molecular biology.

[43]  F. Goñi,et al.  Human ATG3 binding to lipid bilayers: role of lipid geometry, and electric charge , 2017, Scientific Reports.

[44]  Edward L. Huttlin,et al.  Systematic Analysis of Human Cells Lacking ATG8 Proteins Uncovers Roles for GABARAPs and the CCZ1/MON1 Regulator C18orf8/RMC1 in Macroautophagic and Selective Autophagic Flux , 2017, Molecular and Cellular Biology.

[45]  R. Xavier,et al.  Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine , 2017, Science.

[46]  C. Kraft,et al.  Atg4 proteolytic activity can be inhibited by Atg1 phosphorylation , 2017, Nature Communications.

[47]  M. Komatsu,et al.  Autophagy-monitoring and autophagy-deficient mice , 2017, Autophagy.

[48]  J. Hurley,et al.  Mechanisms of Autophagy Initiation. , 2017, Annual review of biochemistry.

[49]  E. Baehrecke,et al.  Cleaning House: Selective Autophagy of Organelles. , 2017, Developmental cell.

[50]  M. Peter,et al.  Conserved Atg8 recognition sites mediate Atg4 association with autophagosomal membranes and Atg8 deconjugation , 2017, EMBO reports.

[51]  T. Lamark,et al.  ATG4B contains a C-terminal LIR motif important for binding and efficient cleavage of mammalian orthologs of yeast Atg8 , 2017, Autophagy.

[52]  Yasin F. Dagdas,et al.  ATG8 Expansion: A Driver of Selective Autophagy Diversification? , 2017, Trends in plant science.

[53]  O. Florey,et al.  Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation , 2017, Autophagy.

[54]  Masato Koike,et al.  The ATG conjugation systems are important for degradation of the inner autophagosomal membrane , 2016, Science.

[55]  C. Kraft,et al.  Mechanism of cargo-directed Atg8 conjugation during selective autophagy , 2016, eLife.

[56]  G. Ramm,et al.  Atg8 family LC3/GABARAP proteins are crucial for autophagosome–lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation , 2016, The Journal of cell biology.

[57]  V. Dötsch,et al.  Structural and functional analysis of the GABARAP interaction motif (GIM) , 2016, bioRxiv.

[58]  Y. Eishi,et al.  Systemic Analysis of Atg5-Null Mice Rescued from Neonatal Lethality by Transgenic ATG5 Expression in Neurons. , 2016, Developmental cell.

[59]  V. Deretic,et al.  TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis. , 2016, Developmental cell.

[60]  Jianping Liu,et al.  Structural insights into the interaction and disease mechanism of neurodegenerative disease-associated optineurin and TBK1 proteins , 2016, Nature Communications.

[61]  Ya-xin Lou,et al.  TMEM166/EVA1A interacts with ATG16L1 and induces autophagosome formation and cell death , 2016, Cell Death and Disease.

[62]  G. Kontaxis,et al.  Accessory Interaction Motifs in the Atg19 Cargo Receptor Enable Strong Binding to the Clustered Ubiquitin-related Atg8 Protein , 2016, The Journal of Biological Chemistry.

[63]  D. Rubinsztein,et al.  Mammalian Autophagy: How Does It Work? , 2016, Annual review of biochemistry.

[64]  R. Xavier,et al.  The T300A Crohn's disease risk polymorphism impairs function of the WD40 domain of ATG16L1 , 2016, Nature Communications.

[65]  S. Martens,et al.  Mechanisms of Selective Autophagy , 2016, Journal of molecular biology.

[66]  D. Green,et al.  Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells , 2016, Nature.

[67]  Y. van de Peer,et al.  hfAIM: A reliable bioinformatics approach for in silico genome-wide identification of autophagy-associated Atg8-interacting motifs in various organisms , 2016, Autophagy.

[68]  M. Valle,et al.  Lipid Geometry and Bilayer Curvature Modulate LC3/GABARAP-Mediated Model Autophagosomal Elongation. , 2016, Biophysical journal.

[69]  P. Wang,et al.  Structural Basis of the Differential Function of the Two C. elegans Atg8 Homologs, LGG-1 and LGG-2, in Autophagy. , 2015, Molecular cell.

[70]  V. Dötsch,et al.  TECPR2 Cooperates with LC3C to Regulate COPII-Dependent ER Export. , 2015, Molecular cell.

[71]  S. Martens,et al.  Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy , 2015, eLife.

[72]  Vladimir Denic,et al.  Receptor-Bound Targets of Selective Autophagy Use a Scaffold Protein to Activate the Atg1 Kinase. , 2015, Molecular cell.

[73]  D. Green,et al.  Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins , 2015, Nature Cell Biology.

[74]  Terje Johansen,et al.  The selective autophagy receptor p62 forms a flexible filamentous helical scaffold. , 2015, Cell reports.

[75]  I. Mills,et al.  Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs. , 2015, Experimental cell research.

[76]  M. Thumm,et al.  PI3P binding by Atg21 organises Atg8 lipidation , 2015, The EMBO journal.

[77]  Y. Ohsumi,et al.  Localization of Atg3 to autophagy‐related membranes and its enhancement by the Atg8‐family interacting motif to promote expansion of the membranes , 2015, FEBS letters.

[78]  Kuninori Suzuki,et al.  Visualization of Atg3 during Autophagosome Formation in Saccharomyces cerevisiae * , 2015, The Journal of Biological Chemistry.

[79]  J. Debnath,et al.  ATG12-ATG3 Interacts with Alix to Promote Basal Autophagic Flux and Late Endosome Function , 2015, Nature Cell Biology.

[80]  I. Dikic,et al.  PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. , 2015, Molecular cell.

[81]  M. Overholtzer,et al.  V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation , 2015, Autophagy.

[82]  R. Lipowsky,et al.  Membrane Morphology Is Actively Transformed by Covalent Binding of the Protein Atg8 to PE-Lipids , 2014, PloS one.

[83]  Michael I. Wilson,et al.  WIPI2 Links LC3 Conjugation with PI3P, Autophagosome Formation, and Pathogen Clearance by Recruiting Atg12–5-16L1 , 2014, Molecular cell.

[84]  A. Ernst,et al.  Cargo recognition and trafficking in selective autophagy , 2014, Nature Cell Biology.

[85]  Lígia C. Gomes,et al.  Autophagy in antimicrobial immunity. , 2014, Molecular cell.

[86]  J. Bewersdorf,et al.  Lipidation of the LC3/GABARAP family of autophagy proteins relies upon a membrane curvature-sensing domain in Atg3 , 2014, Nature Cell Biology.

[87]  Keiji Tanaka,et al.  LC3B is indispensable for selective autophagy of p62 but not basal autophagy. , 2014, Biochemical and biophysical research communications.

[88]  V. Promponas,et al.  iLIR , 2014, Autophagy.

[89]  Iosune Ibiricu,et al.  Cargo binding to Atg19 unmasks further Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy , 2014, Nature Cell Biology.

[90]  Henri G. Franquelim,et al.  Molecular Mechanism of Autophagic Membrane-Scaffold Assembly and Disassembly , 2014, Cell.

[91]  B. Satiat-Jeunemaitre,et al.  The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39. , 2014, Developmental cell.

[92]  David G. McEwan,et al.  The LC3 interactome at a glance , 2014, Journal of Cell Science.

[93]  G. Takaesu,et al.  Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12 , 2013, Proceedings of the National Academy of Sciences.

[94]  S. Akira,et al.  Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin , 2013, The Journal of cell biology.

[95]  Takeshi Noda,et al.  Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury , 2013, The EMBO journal.

[96]  T. Lamark,et al.  The LIR motif – crucial for selective autophagy , 2013, Journal of Cell Science.

[97]  In Hye Lee,et al.  Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor , 2013, Nature Medicine.

[98]  W. Yang,et al.  Spatiotemporally controlled induction of autophagy-mediated lysosome turnover , 2013, Nature Communications.

[99]  Byeong-Won Kim,et al.  Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8 , 2013, Nature Communications.

[100]  S. Akira,et al.  FIP200 regulates targeting of Atg16L1 to the isolation membrane , 2013, EMBO reports.

[101]  K. Pallauf,et al.  TMEM59 defines a novel ATG16L1‐binding motif that promotes local activation of LC3 , 2013, The EMBO journal.

[102]  M. Overholtzer,et al.  Interaction Between FIP200 and ATG16L1 Distinguishes ULK1 Complex-Dependent and -Independent Autophagy , 2012, Nature Structural &Molecular Biology.

[103]  C. Kraft,et al.  Mechanism and functions of membrane binding by the Atg5–Atg12/Atg16 complex during autophagosome formation , 2012, The EMBO journal.

[104]  S. Bloor,et al.  LC3C, Bound Selectively by a Noncanonical LIR Motif in NDP52, Is Required for Antibacterial Autophagy , 2012, Molecular cell.

[105]  K. Torgersen,et al.  ATG8 Family Proteins Act as Scaffolds for Assembly of the ULK Complex , 2012, The Journal of Biological Chemistry.

[106]  J. Inazawa,et al.  A transcriptional variant of the LC3A gene is involved in autophagy and frequently inactivated in human cancers , 2012, Oncogene.

[107]  D. Klionsky,et al.  Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7–Atg3 and Atg7–Atg10 structures , 2012, Nature Structural &Molecular Biology.

[108]  Kay Hofmann,et al.  Binding of the Atg1/ULK1 kinase to the ubiquitin‐like protein Atg8 regulates autophagy , 2012, The EMBO journal.

[109]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[110]  Hong Wang,et al.  Dual roles of Atg8−PE deconjugation by Atg4 in autophagy , 2012, Autophagy.

[111]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[112]  E. Zandi,et al.  Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation. , 2012, Cell host & microbe.

[113]  Y. Ohsumi,et al.  Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis , 2012, Autophagy.

[114]  V. Deretic,et al.  Autophagy‐based unconventional secretory pathway for extracellular delivery of IL‐1β , 2011, The EMBO journal.

[115]  H. Virgin,et al.  Autophagy proteins regulate the secretory component of osteoclastic bone resorption. , 2011, Developmental cell.

[116]  K. Ogura,et al.  Structural basis of Atg8 activation by a homodimeric E1, Atg7. , 2011, Molecular cell.

[117]  Cole M. Haynes,et al.  Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes , 2011, Nature Cell Biology.

[118]  N. Mizushima,et al.  The role of Atg proteins in autophagosome formation. , 2011, Annual review of cell and developmental biology.

[119]  D. Green,et al.  Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells , 2011, Proceedings of the National Academy of Sciences.

[120]  Shmuel Pietrokovski,et al.  Atg8: an autophagy-related ubiquitin-like protein family , 2011, Genome Biology.

[121]  Xuejun Jiang,et al.  SNARE Proteins Are Required for Macroautophagy , 2011, Cell.

[122]  P. Güntert,et al.  Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1. , 2011, Journal of molecular biology.

[123]  Sebastian A. Wagner,et al.  Phosphorylation of the Autophagy Receptor Optineurin Restricts Salmonella Growth , 2011, Science.

[124]  Zvulun Elazar,et al.  LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. , 2011, Developmental cell.

[125]  T. Lamark,et al.  Selective autophagy mediated by autophagic adapter proteins , 2011, Autophagy.

[126]  M. Demirci Comprehensive Clinical Nephrology 3rd Edition , 2011 .

[127]  E. Eskelinen,et al.  Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8 , 2010, The Journal of cell biology.

[128]  N. Mizushima,et al.  Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins , 2010, Autophagy.

[129]  S. Gygi,et al.  Network organization of the human autophagy system , 2010, Nature.

[130]  Masahiro Watanabe,et al.  The NMR structure of the autophagy-related protein Atg8 , 2010, Journal of biomolecular NMR.

[131]  F. Inagaki,et al.  Atg8‐family interacting motif crucial for selective autophagy , 2010, FEBS letters.

[132]  C. Anjard,et al.  Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation , 2010, The Journal of cell biology.

[133]  C. Anjard,et al.  Unconventional secretion of Acb1 is mediated by autophagosomes , 2010, The Journal of cell biology.

[134]  N. Mizushima,et al.  Methods in Mammalian Autophagy Research , 2010, Cell.

[135]  G. Bjørkøy,et al.  FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end–directed vesicle transport , 2010, The Journal of cell biology.

[136]  Z. Elazar,et al.  Mammalian Atg8s: one is simply not enough. , 2010, Autophagy.

[137]  T. Noda,et al.  A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation , 2009, Nature Cell Biology.

[138]  Eeva-Liisa Eskelinen,et al.  3D tomography reveals connections between the phagophore and endoplasmic reticulum , 2009, Autophagy.

[139]  M. Komatsu,et al.  A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. , 2009, Molecular cell.

[140]  F. Inagaki,et al.  Structural basis of target recognition by Atg8/LC3 during selective autophagy , 2008, Genes to cells : devoted to molecular & cellular mechanisms.

[141]  S. Akira,et al.  Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production , 2008, Nature.

[142]  T. Fujimura,et al.  The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. , 2008, Molecular biology of the cell.

[143]  T. Mizushima,et al.  Structural Basis for Sorting Mechanism of p62 in Selective Autophagy* , 2008, Journal of Biological Chemistry.

[144]  Y. Ohsumi,et al.  Physiological pH and Acidic Phospholipids Contribute to Substrate Specificity in Lipidation of Atg8* , 2008, Journal of Biological Chemistry.

[145]  H. McMahon,et al.  Mechanisms of membrane fusion: disparate players and common principles , 2008, Nature Reviews Molecular Cell Biology.

[146]  J. Guan,et al.  FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells , 2008, The Journal of cell biology.

[147]  T. Noda,et al.  The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. , 2008, Molecular biology of the cell.

[148]  F. Inagaki,et al.  The Atg12-Atg5 Conjugate Has a Novel E3-like Activity for Protein Lipidation in Autophagy* , 2007, Journal of Biological Chemistry.

[149]  G. Bjørkøy,et al.  p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy* , 2007, Journal of Biological Chemistry.

[150]  Y. Ohsumi,et al.  Atg8, a Ubiquitin-like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion , 2007, Cell.

[151]  F. Inagaki,et al.  The Crystal Structure of Atg3, an Autophagy-related Ubiquitin Carrier Protein (E2) Enzyme that Mediates Atg8 Lipidation* , 2007, Journal of Biological Chemistry.

[152]  Y. Ohsumi,et al.  Hierarchy of Atg proteins in pre‐autophagosomal structure organization , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[153]  M. Komatsu,et al.  Phosphatidylserine in Addition to Phosphatidylethanolamine Is an in Vitro Target of the Mammalian Atg8 Modifiers, LC3, GABARAP, and GATE-16* , 2006, Journal of Biological Chemistry.

[154]  Masaaki Komatsu,et al.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice , 2005, The Journal of cell biology.

[155]  T. Ueno,et al.  HsAtg4B/HsApg4B/Autophagin-1 Cleaves the Carboxyl Termini of Three Human Atg8 Homologues and Delipidates Microtubule-associated Protein Light Chain 3- and GABAA Receptor-associated Protein-Phospholipid Conjugates* , 2004, Journal of Biological Chemistry.

[156]  T. Natsume,et al.  Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate , 2003, Journal of Cell Science.

[157]  N. Mizushima,et al.  Formation of the ∼350-kDa Apg12-Apg5·Apg16 Multimeric Complex, Mediated by Apg16 Oligomerization, Is Essential for Autophagy in Yeast* , 2002, The Journal of Biological Chemistry.

[158]  N. Mizushima,et al.  Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. , 2002, The Journal of biological chemistry.

[159]  R. Olsen,et al.  The Subcellular Distribution of GABARAP and Its Ability to Interact with NSF Suggest a Role for This Protein in the Intracellular Transport of GABAA Receptors , 2001, Molecular and Cellular Neuroscience.

[160]  Takeshi Noda,et al.  A ubiquitin-like system mediates protein lipidation , 2000, Nature.

[161]  Takeshi Noda,et al.  LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing , 2000, The EMBO journal.

[162]  Takeshi Noda,et al.  The Reversible Modification Regulates the Membrane-Binding State of Apg8/Aut7 Essential for Autophagy and the Cytoplasm to Vacuole Targeting Pathway , 2000, The Journal of cell biology.

[163]  D. Fass,et al.  Structure of GATE-16, Membrane Transport Modulator and Mammalian Ortholog of Autophagocytosis Factor Aut7p* , 2000, The Journal of Biological Chemistry.

[164]  A. Porat,et al.  GATE‐16, a membrane transport modulator, interacts with NSF and the Golgi v‐SNARE GOS‐28 , 2000, The EMBO journal.

[165]  Takeshi Noda,et al.  Formation Process of Autophagosome Is Traced with Apg8/Aut7p in Yeast , 1999, The Journal of cell biology.

[166]  Takeshi Noda,et al.  Apg16p is required for the function of the Apg12p–Apg5p conjugate in the yeast autophagy pathway , 1999, The EMBO journal.

[167]  N. Brandon,et al.  GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton , 1999, Nature.

[168]  Michael D. George,et al.  A protein conjugation system essential for autophagy , 1998, Nature.

[169]  M. Bredschneider,et al.  Aut2p and Aut7p, two novel microtubule‐associated proteins are essential for delivery of autophagic vesicles to the vacuole , 1998, The EMBO journal.

[170]  A. Porat,et al.  Isolation and Characterization of a Novel Low Molecular Weight Protein Involved in Intra-Golgi Traffic* , 1998, The Journal of Biological Chemistry.

[171]  D. Klionsky,et al.  Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[172]  Y. Ohsumi,et al.  Isolation and characterization of autophagy‐defective mutants of Saccharomyces cerevisiae , 1993, FEBS letters.

[173]  Vladimir Gelfand,et al.  18 kDa microtubule‐associated protein: identification as a new light chain (LC‐3) of microtubule‐associated protein 1 (MAP‐1) , 1987, FEBS letters.

[174]  A Ciechanover,et al.  Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[175]  A Ciechanover,et al.  ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[176]  G Goldstein,et al.  Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. , 1975, Proceedings of the National Academy of Sciences of the United States of America.