Fast and stable evaluation of box-splines via the BB-form

To repeatedly evaluate linear combinations of box-splines in a fast and stable way, in particular along knot planes, the box-spline is converted to and tabulated as piecewise polynomial in BB-form (Bernstein–Bézier-form). We show that the BB-coefficients can be derived and stored as integers plus a rational scale factor and derive a hash table for efficiently accessing the polynomial pieces. This pre-processing, the resulting evaluation algorithm and use in a widely-used ray-tracing package are illustrated for splines based on two trivariate box-splines: the seven-directional box-spline on the Cartesian lattice and the six-directional box-spline on the face-centered cubic lattice.

[1]  R. A. Nicolaides,et al.  On a Class of Finite Elements Generated by Lagrange Interpolation , 1972 .

[2]  Kurt Jetter,et al.  Algorithms for cardinal interpolation using box splines and radial basis functions , 1991 .

[3]  C. D. Boor,et al.  B-Form Basics. , 1986 .

[4]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[5]  Michael D. McCool Accelerated Evaluation of Box Splines via a Parallel Inverse FFT , 1996, Comput. Graph. Forum.

[6]  Dimitri Van De Ville,et al.  Three-directional box-splines: characterization and efficient evaluation , 2006, IEEE Signal Processing Letters.

[7]  Jörg Peters,et al.  Box-spline based CSG blends , 1997, SMA '97.

[8]  Ming-Jun Lai,et al.  Fortran subroutines for B-nets of box splines on three- and four-directional meshes , 1992, Numerical Algorithms.

[9]  Morten Dæhlen,et al.  On the evaluation of box splines , 1989 .

[10]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[11]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[12]  Henry Fuchs,et al.  On visible surface generation by a priori tree structures , 1980, SIGGRAPH '80.

[13]  Alireza Entezari,et al.  Optimal sampling lattices and trivariate box splines , 2007 .

[14]  K. Chung,et al.  On Lattices Admitting Unique Lagrange Interpolations , 1977 .

[15]  Carl de Boor,et al.  On the evaluation of box splines , 2005, Numerical Algorithms.

[16]  C. D. Boor,et al.  Box splines , 1993 .

[17]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[18]  Tom Lyche,et al.  Mathematical methods in computer aided geometric design , 1989 .

[19]  Lucia Romani,et al.  The mixed directional difference–summation algorithm for generating the Bézier net of a trivariate four-direction Box-spline , 2006, Numerical Algorithms.

[20]  Charles K. Chui,et al.  Algorithms for generating B-nets and graphically displaying spline surfaces on three- and four-directional meshes , 1991, Comput. Aided Geom. Des..

[21]  Jörg Peters,et al.  C2 Surfaces Built from Zero Sets of the 7-Direction Box Spline , 1994, IMA Conference on the Mathematics of Surfaces.

[22]  Leif Kobbelt Stable evaluation of box‐splines , 2004, Numerical Algorithms.

[23]  Alireza Entezari,et al.  Extensions of the Zwart-Powell Box Spline for Volumetric Data Reconstruction on the Cartesian Lattice , 2006, IEEE Transactions on Visualization and Computer Graphics.