Data-driven sensor fault estimation filter design with guaranteed stability
暂无分享,去创建一个
[1] Alessandro Chiuso,et al. The role of vector autoregressive modeling in predictor-based subspace identification , 2007, Autom..
[2] Michel Verhaegen,et al. Identification of Fault Estimation Filter From I/O Data for Systems With Stable Inversion , 2012, IEEE Transactions on Automatic Control.
[3] Steven Gillijns,et al. Kalman filtering techniques for system inversion and data assimilation , 2007 .
[4] S. Joe Qin,et al. Subspace approach to multidimensional fault identification and reconstruction , 1998 .
[5] Ping Zhang,et al. Subspace method aided data-driven design of fault detection and isolation systems , 2009 .
[6] Sirish L. Shah,et al. From data to diagnosis and control using generalized orthonormal basis filters. Part I: Development of state observers , 2005 .
[7] Si-Zhao Joe Qin,et al. Survey on data-driven industrial process monitoring and diagnosis , 2012, Annu. Rev. Control..
[8] Michel Verhaegen,et al. Data-driven robust receding horizon fault estimation , 2015, Autom..
[9] Michel Verhaegen,et al. Robust Fault Detection With Statistical Uncertainty in Identified Parameters , 2012, IEEE Transactions on Signal Processing.
[10] Hao Ye,et al. Data-driven diagnosis of sensor precision degradation in the presence of control , 2012 .
[11] Matthew S. Hölzel,et al. On the accuracy of least squares algorithms for estimating zeros , 2010, Proceedings of the 2010 American Control Conference.
[12] Michel Verhaegen,et al. Direct identification of fault estimation filter for sensor faults , 2015, ArXiv.