Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy.

Due to the diffraction limited resolution and the presence of speckle noise, visible laser light is generally thought to be impractical for finding deep subwavelength defects in patterned semiconductor wafers. Here, we report on a nondestructive low-noise interferometric imaging method capable of detecting nanoscale defects within a wide field of view using visible light. The method uses a common-path laser interferometer and a combination of digital image processing techniques to produce 70 μm by 27 μm panoramic phase and amplitude images of the test nanopattern. Significant noise reduction and high sensitivity are achieved, which enables successful detection of several different types of sparse defects with sizes on the order of 20 nm wide by 100 nm long by 110 nm tall.

[1]  L. Kavan,et al.  Defects in individual semiconducting single wall carbon nanotubes: Raman spectroscopic and in situ Raman spectroelectrochemical study. , 2010, Nano letters.

[2]  Amir Arbabi,et al.  Optically monitoring and controlling nanoscale topography during semiconductor etching , 2012, Light: Science & Applications.

[3]  Razvan Stoian,et al.  Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation , 1999 .

[4]  J. Rogers,et al.  Spatial light interference microscopy (SLIM) , 2010, IEEE Photonic Society 24th Annual Meeting.

[5]  Guoan Zheng,et al.  The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM) , 2011, Proceedings of the National Academy of Sciences.

[6]  Daniel R. Mason,et al.  Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses. , 2010, Optics letters.

[7]  G. Kino,et al.  Solid immersion microscope , 1990 .

[8]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[9]  S. Papernov,et al.  Localized absorption effects during 351 nm, pulsed laser irradiation of dielectric multilayer thin films , 1997 .

[10]  S. Iijima,et al.  Defect-Induced Atomic Migration in Carbon Nanopeapod: Tracking the Single-Atom Dynamic Behavior , 2004 .

[11]  J. M. Drake,et al.  Special Issue: Dynamics of Molecular Systems , 1990 .

[12]  P. Combis,et al.  Study of UV laser interaction with gold nanoparticles embedded in silica , 2002 .

[13]  B. Goldberg,et al.  High Resolution, High Collection Efficiency in Numerical Aperture Increasing Lens Microscopy of Individual Quantum Dots , 2005 .

[14]  Bryant B. Chhun,et al.  Super-Resolution Video Microscopy of Live Cells by Structured Illumination , 2009, Nature Methods.

[15]  M. Horton,et al.  Breaking the speed limit with atomic force microscopy , 2007 .

[16]  Gabriel Popescu,et al.  Hilbert phase microscopy for investigating fast dynamics in transparent systems. , 2005, Optics letters.

[17]  Wei Min,et al.  Coherent nonlinear optical imaging: beyond fluorescence microscopy. , 2011, Annual review of physical chemistry.

[18]  G. Popescu Quantitative Phase Imaging of Cells and Tissues , 2011 .

[19]  Masao Hiramoto,et al.  Efficient colour splitters for high-pixel-density image sensors , 2013, Nature Photonics.

[20]  Aydogan Ozcan,et al.  Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses , 2013, Nature Photonics.

[21]  D. Reid,et al.  Nanoscale optical microscopy in the vectorial focusing regime , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[22]  B. Goldberg,et al.  High spatial resolution subsurface microscopy , 2001 .

[23]  E. Bamberg,et al.  Scan speed limit in atomic force microscopy , 1993 .

[24]  Xiangfeng Duan,et al.  High-yield self-limiting single-nanowire assembly with dielectrophoresis. , 2010, Nature nanotechnology.

[25]  Urs Sennhauser,et al.  Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. , 2010, Nature communications.

[26]  Henning Sirringhaus,et al.  High yield, single droplet electrode arrays for nanoscale printed electronics. , 2010, ACS nano.

[27]  E. Abbe,et al.  VII.—On the Estimation of Aperture in the Microscope. , 1881 .

[28]  C. Wagner,et al.  EUV lithography: Lithography gets extreme , 2010 .

[29]  H. Leamy,et al.  Charge collection scanning electron microscopy , 1982 .

[30]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[31]  Martha I. Sanchez,et al.  Carbon nanotube scanning probe for profiling of deep-ultraviolet and 193 nm photoresist patterns , 2002 .

[32]  Wael Mismar,et al.  Examination of axonal injury and regeneration in micropatterned neuronal culture using pulsed laser microbeam dissection. , 2010, Lab on a chip.

[33]  J. Miao,et al.  High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution , 2008, Proceedings of the National Academy of Sciences.

[34]  Bryan M. Barnes,et al.  Scatterfield microscopy of 22-nm node patterned defects using visible and DUV light , 2012, Advanced Lithography.

[35]  J. Miao,et al.  Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source. , 2011, Optics express.

[36]  Gabriel Popescu,et al.  Fresnel particle tracing in three dimensions using diffraction phase microscopy. , 2007, Optics letters.

[37]  Kinam Kim,et al.  Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier , 2012, Science.

[38]  Franz J. Giessibl,et al.  Advances in atomic force microscopy , 2003, cond-mat/0305119.

[39]  Farhad Salmassi,et al.  High numerical aperture reflection mode coherent diffraction microscopy using off-axis apertured illumination. , 2012, Optics express.

[40]  Munirathna Padmanaban,et al.  CD changes of 193-nm resists during SEM measurement , 2001, SPIE Advanced Lithography.