Adipocyte HIF2α functions as a thermostat via PKA Cα regulation in beige adipocytes

[1]  Changtao Jiang,et al.  Intestinal hypoxia-inducible factor 2α regulates lactate levels to shape the gut microbiome and alter thermogenesis. , 2021, Cell metabolism.

[2]  Geng Chen,et al.  Comparative Transcriptome Profiling of Cold Exposure and β3-AR Agonist CL316,243-Induced Browning of White Fat , 2021, Frontiers in Physiology.

[3]  Chuanming Hao,et al.  SIRT1 attenuates renal fibrosis by repressing HIF-2α , 2021, Cell death discovery.

[4]  S. Kajimura,et al.  The cellular and functional complexity of thermogenic fat , 2021, Nature Reviews Molecular Cell Biology.

[5]  Sheng-Cai Lin,et al.  AIDA directly connects sympathetic innervation to adaptive thermogenesis by UCP1 , 2021, Nature Cell Biology.

[6]  D. Strand,et al.  Pathologic HIF1α signaling drives adipose progenitor dysfunction in obesity. , 2021, Cell stem cell.

[7]  Alexander R. Pico,et al.  WikiPathways: connecting communities , 2020, Nucleic Acids Res..

[8]  M. Klingenspor,et al.  Isolation, Culture, and Functional Analysis of Murine Thermogenic Adipocytes , 2020, STAR protocols.

[9]  N. Chandel,et al.  Cellular adaptation to hypoxia through hypoxia inducible factors and beyond , 2020, Nature Reviews Molecular Cell Biology.

[10]  N. Chandel,et al.  Mitochondrial TCA cycle metabolites control physiology and disease , 2020, Nature Communications.

[11]  Xiaowei Wang,et al.  miRDB: an online database for prediction of functional microRNA targets , 2019, Nucleic Acids Res..

[12]  Kyoung-Jae Won,et al.  A PRDM16-Driven Metabolic Signal from Adipocytes Regulates Precursor Cell Fate. , 2019, Cell metabolism.

[13]  E. Paraskeva,et al.  Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism , 2019, Cells.

[14]  Mengle Shao,et al.  Transcriptional brakes on the road to adipocyte thermogenesis. , 2019, Biochimica et biophysica acta. Molecular and cell biology of lipids.

[15]  W. Zhengkun,et al.  Seasonal variations of adipose tissue in Tupaia belangeri (Mammalia: Scandentia: Tupaiidae) , 2019, The European Zoological Journal.

[16]  Zhihui Feng,et al.  Modulation of HIF-2α PAS-B domain contributes to physiological responses , 2018, Proceedings of the National Academy of Sciences.

[17]  Judith A. Blake,et al.  Mouse Genome Database (MGD) 2019 , 2018, Nucleic Acids Res..

[18]  Terry J. Smith,et al.  HIF2A–LOX Pathway Promotes Fibrotic Tissue Remodeling in Thyroid-Associated Orbitopathy , 2018, Endocrinology.

[19]  Alexander S. Banks,et al.  Accumulation of succinate controls activation of adipose tissue thermogenesis , 2018, Nature.

[20]  M. Kumari,et al.  Warming Induces Significant Reprogramming of Beige, but Not Brown, Adipocyte Cellular Identity. , 2018, Cell metabolism.

[21]  S. Kajimura,et al.  Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism , 2018, Science Signaling.

[22]  Brandon J Thomas,et al.  IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure , 2018, Cell.

[23]  S. Kajimura,et al.  Repression of Adipose Tissue Fibrosis through a PRDM16-GTF2IRD1 Complex Improves Systemic Glucose Homeostasis. , 2018, Cell metabolism.

[24]  S. Welford,et al.  HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism , 2017, Nature Communications.

[25]  Edward T Chouchani,et al.  Mitochondrial reactive oxygen species and adipose tissue thermogenesis: Bridging physiology and mechanisms , 2017, The Journal of Biological Chemistry.

[26]  Yuehua Wu,et al.  Activation of intestinal hypoxia-inducible factor 2α during obesity contributes to hepatic steatosis , 2017, Nature Medicine.

[27]  S. Kajimura,et al.  UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis , 2017, Nature Medicine.

[28]  M. Michael,et al.  MicroRNA Biogenesis in Hypoxia. , 2017, MicroRNA.

[29]  P. Westgate,et al.  Mast Cells Promote Seasonal White Adipose Beiging in Humans , 2017, Diabetes.

[30]  Xiaoming Zhu,et al.  PKA-RIIB Deficiency Induces Brown Fatlike Adipocytes in Inguinal WAT and Promotes Energy Expenditure in Male FVB/NJ Mice , 2017, Endocrinology.

[31]  P. Scherer,et al.  Adipose HIF-1α causes obesity by suppressing brown adipose tissue thermogenesis , 2017, Journal of Molecular Medicine.

[32]  J. Debnath,et al.  Beige Adipocyte Maintenance Is Regulated by Autophagy-Induced Mitochondrial Clearance. , 2016, Cell metabolism.

[33]  Junho Lee,et al.  Protein Kinase A Subunit Balance Regulates Lipid Metabolism in Caenorhabditis elegans and Mammalian Adipocytes* , 2016, The Journal of Biological Chemistry.

[34]  B. Wicksteed,et al.  Protein kinase A induces UCP1 expression in specific adipose depots to increase energy expenditure and improve metabolic health. , 2016, American journal of physiology. Regulatory, integrative and comparative physiology.

[35]  Liping Zhang,et al.  Mitochondrial cAMP signaling , 2016, Cellular and Molecular Life Sciences.

[36]  H. Kosako,et al.  PKA Regulates PINK1 Stability and Parkin Recruitment to Damaged Mitochondria through Phosphorylation of MIC60. , 2016, Molecular cell.

[37]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[38]  B. Spiegelman,et al.  Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1 , 2016, Nature.

[39]  S. Bornstein,et al.  Adipocyte-Specific Hypoxia-Inducible Factor 2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation , 2015, Molecular and Cellular Biology.

[40]  B. Spiegelman,et al.  A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat , 2015, Cell.

[41]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[42]  H. Sul,et al.  Cold-inducible Zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat. , 2015, Molecular cell.

[43]  S. Farmer,et al.  Myocardin-Related Transcription Factor A Regulates Conversion of Progenitors to Beige Adipocytes , 2015, Cell.

[44]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[45]  Davide Heller,et al.  STRING v10: protein–protein interaction networks, integrated over the tree of life , 2014, Nucleic Acids Res..

[46]  V. Nizet,et al.  HIF transcription factors, inflammation, and immunity. , 2014, Immunity.

[47]  P. Westgate,et al.  The effects of temperature and seasons on subcutaneous white adipose tissue in humans: evidence for thermogenic gene induction. , 2014, The Journal of clinical endocrinology and metabolism.

[48]  Junho Lee,et al.  Lipid Droplet Protein LID-1 Mediates ATGL-1-Dependent Lipolysis during Fasting in Caenorhabditis elegans , 2014, Molecular and Cellular Biology.

[49]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[50]  Jung-whan Kim,et al.  Increased Adipocyte O2 Consumption Triggers HIF-1α, Causing Inflammation and Insulin Resistance in Obesity , 2014, Cell.

[51]  Richard G Melvin,et al.  Transcriptomic Analysis of Brown Adipose Tissue across the Physiological Extremes of Natural Hibernation , 2013, PloS one.

[52]  P. Seale,et al.  Brown and beige fat: development, function and therapeutic potential , 2013, Nature Medicine.

[53]  T. Rülicke,et al.  Bi-directional interconversion of brite and white adipocytes , 2013, Nature Cell Biology.

[54]  B. Spiegelman,et al.  Adaptive thermogenesis in adipocytes: is beige the new brown? , 2013, Genes & development.

[55]  P. Scherer,et al.  Selective Inhibition of Hypoxia-Inducible Factor 1α Ameliorates Adipose Tissue Dysfunction , 2012, Molecular and Cellular Biology.

[56]  P. Lishko,et al.  Mechanism of Fatty-Acid-Dependent UCP1 Uncoupling in Brown Fat Mitochondria , 2012, Cell.

[57]  N. Goda,et al.  Hypoxia-inducible factors and their roles in energy metabolism , 2012, International Journal of Hematology.

[58]  I. Murano,et al.  The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes[S] , 2012, Journal of Lipid Research.

[59]  Guenter Haemmerle,et al.  FAT SIGNALS - Lipases and Lipolysis in Lipid Metabolism and Signaling , 2012, Cell metabolism.

[60]  P. Xue,et al.  Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells , 2012, Nature Cell Biology.

[61]  Brian Keith,et al.  HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression , 2011, Nature Reviews Cancer.

[62]  O. Gavrilova,et al.  Disruption of Hypoxia-Inducible Factor 1 in Adipocytes Improves Insulin Sensitivity and Decreases Adiposity in High-Fat Diet–Fed Mice , 2011, Diabetes.

[63]  P. Chambon,et al.  Hypoxia‐inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis , 2011, Hepatology.

[64]  P. Sun,et al.  Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. , 2011, Cell metabolism.

[65]  W. Wong,et al.  Hypoxia-inducible factors and the response to hypoxic stress. , 2010, Molecular cell.

[66]  E. Morrisey,et al.  The von Hippel-Lindau Chuvash mutation promotes pulmonary hypertension and fibrosis in mice. , 2010, The Journal of clinical investigation.

[67]  E. Rankin,et al.  Hypoxia-Inducible Factor 2 Regulates Hepatic Lipid Metabolism , 2009, Molecular and Cellular Biology.

[68]  J. Pouysségur,et al.  Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains , 2009, Molecular and Cellular Biology.

[69]  Zhen-ping Zhu,et al.  Supplemental Data Hypoxia-Independent Angiogenesis in Adipose Tissues during Cold Acclimation , 2008 .

[70]  P. Robinson,et al.  Walking the interactome for prioritization of candidate disease genes. , 2008, American journal of human genetics.

[71]  H. Sul,et al.  Regulation of lipolysis in adipocytes. , 2007, Annual review of nutrition.

[72]  G. Semenza,et al.  HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. , 2007, Cancer cell.

[73]  G. Semenza,et al.  HIF-1 Regulates Cytochrome Oxidase Subunits to Optimize Efficiency of Respiration in Hypoxic Cells , 2007, Cell.

[74]  J. Himms-Hagen,et al.  Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. , 2000, American journal of physiology. Cell physiology.

[75]  M. Kitsuregawa,et al.  Connecting Communities , 2014, Encyclopedia of Social Network Analysis and Mining.

[76]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[77]  Jan Nedergaard,et al.  Brown adipose tissue: function and physiological significance. , 2004, Physiological reviews.