A personalized access model: concepts and services for content delivery platforms

Access to relevant information, adapted to user's needs, preferences and environment, is a challenge in many applications running in content delivery platforms, like IPTV, VoD and mobile Video. In order to provide users with personalized content, applications use various techniques such as content recommendation, content filtering, preference-driven queries, etc. These techniques exploit different knowledge organized into profiles and contexts. However, there is not a common understanding of these concepts and there is no clear foundation of what a personalized access model should be. This paper contributes to this concern by providing, through a meta model, a clear distinction between profile and context, and by providing a set of services which constitutes a basement to the definition of a personalized access model (PAM). Our PAM definition allows applications to interoperate in multiple personalization scenarios, including, preference-based recommendation, context-aware content delivery, personalized access to multiple contents, etc. Concepts and services proposed are tightly defined with respect to real applications requirements provided by Alcatel-Lucent.

[1]  Philip Resnik,et al.  Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language , 1999, J. Artif. Intell. Res..

[2]  Lorrie Faith Cranor,et al.  The platform for privacy preferences , 1999, CACM.

[3]  Umberto Straccia,et al.  User Profile Modeling and Applications to Digital Libraries , 1999, ECDL.

[4]  Barry Smyth,et al.  Case-Based User Profiling for Content Personalisation , 2000, AH.

[5]  Georgia Koutrika,et al.  Personalization of queries in database systems , 2004, Proceedings. 20th International Conference on Data Engineering.

[6]  Werner Kießling,et al.  Situated Preferences and Preference Repositories for Personalized Database Applications , 2004, ER.

[7]  Evaggelia Pitoura,et al.  Fast contextual preference scoring of database tuples , 2008, EDBT '08.

[8]  J. McCarthy,et al.  Formalizing Context (Expanded Notes) , 1994 .

[9]  Dimitre Kostadinov Personnalisation de l'information : une approche de gestion de profils et de reformulation de requêtes. (Data Personalization: an approach for profile management and query reformulation) , 2007 .

[10]  Stanley B. Zdonik,et al.  Profile-driven cache management , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[11]  Bracha Shapira,et al.  AN ONTOLOGY-CONTENT-BASED FILTERING METHOD , 2008 .

[12]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[13]  Maria-Esther Vidal,et al.  Query Rewriting in the Semantic Web7 , 2006, 22nd International Conference on Data Engineering Workshops (ICDEW'06).

[14]  Alon Y. Halevy,et al.  MiniCon: A scalable algorithm for answering queries using views , 2000, The VLDB Journal.

[15]  Bruno Bouzy,et al.  Using the Object Oriented Paradigm to Model Context in Computer Go , 1997 .

[16]  Marc Langheinrich,et al.  The platform for privacy preferences 1.0 (p3p1.0) specification , 2002 .

[17]  Bill N. Schilit,et al.  Context-aware computing applications , 1994, Workshop on Mobile Computing Systems and Applications.

[18]  Hans Jürgen Prömel,et al.  The Steiner Tree Problem , 2002 .

[19]  J. Waters,et al.  A context-sensitive search mechanism , 2004, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[20]  Werner Kießling,et al.  Foundations of Preferences in Database Systems , 2002, VLDB.

[21]  Ralf Rantzau,et al.  Context-sensitive ranking , 2006, SIGMOD Conference.

[22]  Ludovic Lietard,et al.  Préférences et quantités dans le cadre de l'interrogation flexible : sur la prise en compte d'expressions quantifiées , 2006, BDA.

[23]  Stéphane Lopes,et al.  Query Rewriting Based on User's Profile Knowledge , 2007, BDA.

[24]  Anind K. Dey,et al.  Understanding and Using Context , 2001, Personal and Ubiquitous Computing.

[25]  Ling Feng,et al.  Ranking Query Results using Context-Aware Preferences , 2007, 2007 IEEE 23rd International Conference on Data Engineering Workshop.

[26]  Otilia Kocsis,et al.  Context-Dependent User Modelling for Smart Homes , 2007, User Modeling.

[27]  Moira C. Norrie,et al.  Modelling Context for Information Environments , 2004, UMICS.

[28]  Mohand Boughanem,et al.  Présentation et évaluation d'un modèle d'accès personnalisé à l'information basé sur les diagrammes d'influence , 2007, INFORSID.

[29]  Joann J. Ordille,et al.  Querying Heterogeneous Information Sources Using Source Descriptions , 1996, VLDB.

[30]  Felix Naumann,et al.  Quality Driven Source Selection Using Data Envelope Analysis , 1998, IQ.

[31]  Michael R. Genesereth,et al.  Answering recursive queries using views , 1997, PODS '97.

[32]  Luís Moniz Pereira,et al.  User Preference Information in Query Answering , 2002, FQAS.

[33]  Vaninha Vieira,et al.  Towards a Generic Contextual Elements Model to Support Context Management , 2007 .

[34]  Rakesh Agrawal,et al.  A framework for expressing and combining preferences , 2000, SIGMOD '00.

[35]  Boi Faltings,et al.  Inferring User's Preferences using Ontologies , 2006, AAAI.

[36]  Sofiane Abbar,et al.  Profile Matching: Approaches, Techniques, and Algorithms , 2007 .

[37]  Xiaolei Qian,et al.  Query folding , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[38]  Georgia Koutrika,et al.  Personalized queries under a generalized preference model , 2005, 21st International Conference on Data Engineering (ICDE'05).

[39]  Louiqa Raschid,et al.  Using Latency-Recency Profiles for Data Delivery on the Web , 2002, VLDB.

[40]  HalevyAlon,et al.  MiniCon: A scalable algorithm for answering queries using views , 2001, VLDB 2001.

[41]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.