Numerical study of influence of nanoparticle shape on the natural convection in Cu-water nanofluid

[1]  E. Ooi,et al.  Meshless Solution Of 2D And 3D Stokes FlowUsing The Radial Basis Integral Equation Method , 2012 .

[2]  E. Ooi,et al.  The radial basis integral equation method for solving the Helmholtz equation , 2012 .

[3]  E. Ooi,et al.  An efficient implementation of the radial basis integral equation method , 2012 .

[4]  L. Skerget,et al.  Analysis of three-dimensional natural convection of nanofluids by BEM , 2010 .

[5]  M. Tezer-Sezgin,et al.  DRBEM solution of natural convection flow of nanofluids with a heat source , 2010 .

[6]  V. Popov,et al.  A meshless solution to two-dimensional convection–diffusion problems , 2010 .

[7]  E. W. Llewellin,et al.  The rheology of suspensions of solid particles , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Huaqing Xie,et al.  Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid , 2009 .

[9]  V. Popov,et al.  Domain decomposition boundary element method with overlapping sub-domains , 2009 .

[10]  H. Oztop,et al.  Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids , 2008 .

[11]  Ziyad N. Masoud,et al.  Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids , 2008 .

[12]  A. Sequeira,et al.  An advanced meshless LBIE/RBF method for solving two-dimensional incompressible fluid flows , 2008 .

[13]  W. Ang A Beginner's Course in Boundary Element Methods , 2007 .

[14]  R. Tiwari,et al.  HEAT TRANSFER AUGMENTATION IN A TWO-SIDED LID-DRIVEN DIFFERENTIALLY HEATED SQUARE CAVITY UTILIZING NANOFLUIDS , 2007 .

[15]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[16]  A. Cheng Particular solutions of Laplacian, Helmholtz-type, and polyharmonic operators involving higher order radial basis functions , 2000 .

[17]  J. Eastman,et al.  Enhanced thermal conductivity through the development of nanofluids , 1996 .

[18]  J. Venart,et al.  PREDICTION OF TRANSIENT NATURAL CONVECTION IN ENCLOSURES OF ARBITRARY GEOMETRY USING A NONORTHOGONAL NUMERICAL MODEL , 1988 .

[19]  K. Pericleous,et al.  Laminar and turbulent natural convection in an enclosed cavity , 1984 .

[20]  G. D. Davis Natural convection of air in a square cavity: A bench mark numerical solution , 1983 .

[21]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[22]  P. E. Pierce,et al.  Application of ree-eyring generalized flow theory to suspensions of spherical particles , 1956 .

[23]  H. Brinkman The Viscosity of Concentrated Suspensions and Solutions , 1952 .

[24]  M. Reggio,et al.  Natural Convection of Nanofluids in a Square Enclosure with a Protruding Heater , 2012 .

[25]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[26]  Chi-Chuan Wang,et al.  Enhancement of Thermal Conductivity with CuO for Nanofluids , 2006 .

[27]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[28]  L. Skerget,et al.  Boundary-domain integral method using a velocity-vorticity formulation , 1995 .

[29]  J. Duchon Spline minimizing rotation-invariant seminorms in Sobolev spaces , 1977 .