The theory of syntactic domains

In this essay we develop a mathematical theory of syntactic domains with special attention to the theory of government and binding. Starting from an intrinsic characterization of command relations as defined in [Ba 90] we determine the structure of the distributive lattice of command relations. This allows to introduce implication and negation as constructors, whose logic turns out to be the intuitionistic logic of linear posets. Using what is known about intuitionistic logic we can study how domains can be defined from some basic set of command relations that are naturally supplied by the grammar. Moreover, this can be reversed to see how the requirement that domains can be defined in a particular way constrains the syntax. This general theory will then be applied to GB and we will show that there is great evidence to support our claim that command relations are the basic relations from which all other syntactic domains must be defined in a clear and rigid way.

[1]  P. H. Rodenburg,et al.  Manufacturing a cartesian closed category with exactly two objects out of a C-monoid , 1989, Stud Logica.

[2]  R. Wille Concept lattices and conceptual knowledge systems , 1992 .

[3]  Catholijn M. Jonker,et al.  A tractable algorithm for the wellfounded model , 1992 .

[4]  Gerard R. Renardel de Lavalette,et al.  Strictness Analysis via Abstract Interpretation for Recursively Defined Types , 1990, Inf. Comput..

[5]  Noam Chomsky Some notes on economy of derivation and representation , 2013 .

[6]  Michiel Doorman The existence property in the presence of function symbols , 1988 .

[7]  H. B. M. Jonkers,et al.  A semantic framework for the COLD-family of languages , 1986 .

[8]  Geoffrey K. Pullum,et al.  A theory of command relations , 1990 .

[9]  Frans Voorbraak,et al.  A Preferential Model Semantics For Default Logic , 1991, ECSQARU.

[10]  Bezem,et al.  Ramsey's theorem and the pigeonhole principle in intuitionistic mathematics , 1993 .

[11]  Frans Voorbraak,et al.  A Computationally Efficient Approximation of Dempster-Shafer Theory , 1988, Int. J. Man Mach. Stud..

[12]  M. B. Kalsbeek Towards the Interpretability Logic of IΔo+EXP , 1991 .

[13]  Albert Visser,et al.  Peano's Smart Children: A Provability Logical Study of Systems with Built-in Consistency , 1986, Notre Dame J. Formal Log..

[14]  Robert Freidin,et al.  Principles and parameters in comparative grammar , 1991 .

[15]  Geoffrey K. Pullum,et al.  Generalized Phrase Structure Grammar , 1985 .

[16]  G. R. D. Lavalette,et al.  Normalisation of database expressions involving calculations , 1989 .

[17]  F.-J. de Vries,et al.  A functional program for Gaussian Elimination , 1987 .

[18]  Frans Voorbraak,et al.  Generalized Kripke Models for Epistemic Logic , 1991, TARK.

[19]  J. A. Bergstra,et al.  Module algebra for relational specifications , 1986 .

[20]  Edward P. Stabler The logical approach to syntax : foundations, specifications, and implementations of theories of government and binding , 1992 .

[21]  J. Bell STONE SPACES (Cambridge Studies in Advanced Mathematics 3) , 1987 .

[22]  Gerard R. Renardel de Lavalette,et al.  Interpolation in fragments of intuitionistic propositional logic , 1987, Journal of Symbolic Logic.

[23]  Frans Voorbraak,et al.  The Logic of Objective Knowledge and Rational Belief , 1990, JELIA.

[24]  Jaakko Hintikka,et al.  On the Methodology of Linguistics: A Case Study , 1991 .

[25]  E. Williams,et al.  Introduction to the Theory of Grammar , 1986 .

[26]  Marcus Kracht,et al.  On the Logic of Category Definitions , 1989, CL.

[27]  J. C. Mulder,et al.  A modular approach to protocol verification using process algebra , 1986 .

[28]  Peter Sells,et al.  Lectures on contemporary syntactic theories , 1985 .

[29]  Marcus Kracht,et al.  Splittings and the finite model property , 1991, Journal of Symbolic Logic.

[30]  Frans Voorbraak,et al.  On the Justification of Dempster's Rule of Combination , 1988, Artif. Intell..

[31]  Fer-Jan de Vries,et al.  Intuitionistic Free Abelian Groups , 1988, Math. Log. Q..

[32]  Frans Voorbraak,et al.  A Simplification of the Completeness Proofs for Guaspari and Solovay's R , 1986, Notre Dame J. Formal Log..

[33]  G. R. Renardel de Lavalette,et al.  Choice in applicative theories , 1989 .

[34]  Jan A. Bergstra,et al.  Put and get, primitives for synchronous unreliable message passing , 1985 .

[35]  J.L.M. Vrancken Parallel Object Oriented Terms Rewriting : a first implementation in Pool2 , 1989 .

[36]  Edith Hemaspaandra,et al.  Query Optimization Using Rewrite Rules , 1990, RTA.

[37]  A. Visser,et al.  Evaluation, provably deductive equivalence in Heyting's arithmetic of substitution instances of propositional formulas , 1985 .

[38]  Albert Visser,et al.  A descending hierarchy of reflection principles , 1988 .

[39]  J. Vrancken,et al.  Parallel object-oriented term rewriting : the booleans , 1988 .

[40]  Albert Visser The unprovability of small inconsistency , 1993, Arch. Math. Log..

[41]  Albert Visser,et al.  Explicit Fixed Points in Interpretability Logic , 1989, Stud Logica.

[42]  G. R. Renardel de Lavalette,et al.  Interpolation in natural fragments of intuitionistic propositional logic , 1986 .

[43]  M.F.J. Drossaers A perceptron network theorem prover for the propositional calculus , 1989 .

[44]  Tanya Reinhart,et al.  Definite NP Anaphora and C. Command Domains , 1981 .

[45]  G. R. Renardel de Lavalette,et al.  Inductive definitions in COLD-K , 1989 .

[46]  Eric Sven Ristad,et al.  Computational structure of GPSG models , 1990 .

[47]  Marcus Kracht,et al.  Prefinitely Axiomatizable Modal and Intermediate Logics , 1993, Math. Log. Q..

[48]  William C. Rounds,et al.  The logic of unification in grammar , 1990 .

[49]  Albert Visser,et al.  The formalization of Interpretability , 1991, Stud Logica.