Mechanizing and Improving Dependency Pairs

The dependency pair technique is a powerful method for automated termination and innermost termination proofs of term rewrite systems (TRSs). For any TRS, it generates inequality constraints that have to be satisfied by well-founded orders. We improve the dependency pair technique by considerably reducing the number of constraints produced for (innermost) termination proofs. Moreover, we extend transformation techniques to manipulate dependency pairs that simplify (innermost) termination proofs significantly. To fully mechanize the approach, we show how transformations and the search for suitable orders can be mechanized efficiently. We implemented our results in the automated termination prover AProVE and evaluated them on large collections of examples.

[1]  Donald E. Knuth,et al.  Simple Word Problems in Universal Algebras††The work reported in this paper was supported in part by the U.S. Office of Naval Research. , 1970 .

[2]  H. Brown,et al.  Computational Problems in Abstract Algebra , 1971 .

[3]  Gérard P. Huet,et al.  Proofs by induction in equational theories with constructors , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[4]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[5]  Yoshihito Toyama,et al.  Counterexamples to Termination for the Direct Sum of Term Rewriting Systems , 1987, Inf. Process. Lett..

[6]  Bernhard Gramlich Generalized Sufficient Conditions for Modular Termination of Rewriting , 1992, ALP.

[7]  Hans Zantema,et al.  Termination of Term Rewriting by Semantic Labelling , 1995, Fundam. Informaticae.

[8]  J. Urgen Giesl Generating Polynomial Orderings for Termination Proofs ? , 1995 .

[9]  Bernhard Gramlich,et al.  Abstract Relations between Restricted Termination and Confluence Properties of Rewrite Systems , 1995, Fundam. Informaticae.

[10]  Bernhard Gramlich,et al.  Termination and confluence: properties of structured rewrite systems , 1996 .

[11]  Yoshihito Toyama,et al.  Argument Filtering Transformation , 1999, PPDP.

[12]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[13]  Albert Rubio,et al.  Complete Monotonic Semantic Path Orderings , 2000, CADE.

[14]  Enno Ohlebusch,et al.  TALP: A Tool for the Termination Analysis of Logic Programs , 2000, RTA.

[15]  Jürgen Giesl,et al.  Termination of term rewriting using dependency pairs , 2000, Theor. Comput. Sci..

[16]  Nachum Dershowitz,et al.  A General Framework for Automatic Termination Analysis of Logic Programs , 2000, Applicable Algebra in Engineering, Communication and Computing.

[17]  Neil D. Jones,et al.  The size-change principle for program termination , 2001, POPL '01.

[18]  Jürgen Giesl,et al.  Verification of Erlang Processes by Dependency Pairs , 2001, Applicable Algebra in Engineering, Communication and Computing.

[19]  Aart Middeldorp,et al.  Approximating Dependency Graphs Using Tree Automata Techniques , 2001, IJCAR.

[20]  Enno Ohlebusch,et al.  Advanced Topics in Term Rewriting , 2002, Springer New York.

[21]  Enno Ohlebusch,et al.  Modular Termination Proofs for Rewriting Using Dependency Pairs , 2002, J. Symb. Comput..

[22]  Aart Middeldorp,et al.  Approximations for Strategies and Termination , 2002, WRS.

[23]  Peter Schneider-Kamp,et al.  Mechanizing Dependency Pairs , 2003 .

[24]  Jürgen Giesl,et al.  Improving Dependency Pairs , 2003, LPAR.

[25]  Hoon Hong,et al.  Testing Positiveness of Polynomials , 1998, Journal of Automated Reasoning.

[26]  Jürgen Giesl,et al.  The Dependency Pair Framework: Combining Techniques for Automated Termination Proofs , 2005, LPAR.

[27]  Nao Hirokawa,et al.  Dependency Pairs Revisited , 2004, RTA.

[28]  Jürgen Giesl,et al.  Improved Modular Termination Proofs Using Dependency Pairs , 2004, IJCAR.

[29]  Dieter Hofbauer,et al.  Match-Bounded String Rewriting Systems , 2003, Applicable Algebra in Engineering, Communication and Computing.

[30]  Nao Hirokawa,et al.  Polynomial Interpretations with Negative Coefficients , 2004, AISC.

[31]  Nao Hirokawa,et al.  Tyrolean Termination Tool , 2005, RTA.

[32]  Jürgen Giesl,et al.  The size-change principle and dependency pairs for termination of term rewriting , 2005, Applicable Algebra in Engineering, Communication and Computing.

[33]  Hans Zantema Termination of String Rewriting Proved Automatically , 2005, Journal of Automated Reasoning.

[34]  Salvador Lucas,et al.  Polynomials over the reals in proofs of termination: from theory to practice , 2005, RAIRO Theor. Informatics Appl..

[35]  Jürgen Giesl,et al.  Proving and Disproving Termination of Higher-Order Functions , 2005, FroCoS.

[36]  Nao Hirokawa,et al.  Automating the Dependency Pair Method , 2005, CADE.

[37]  Jürgen Giesl,et al.  Automated Termination Analysis for Haskell: From Term Rewriting to Programming Languages , 2006, RTA.

[38]  Jürgen Giesl,et al.  Automated Termination Analysis for Logic Programs by Term Rewriting , 2006, LOPSTR.

[39]  Adam Koprowski TPA: Termination Proved Automatically , 2006, RTA.

[40]  Jürgen Giesl,et al.  Automatic Termination Proofs in the Dependency Pair Framework , 2006, IJCAR.

[41]  N. A C H U M D E R S H O W I T Z Termination of Rewriting' , 2022 .