An Open-Source Tool for Anisotropic Radiation Therapy Planning in Neuro-oncology Using DW-MRI Tractography

There is evidence from histopathological studies that glioma tumor cells migrate preferentially along large white matter bundles. If the peritumoral white matter structures can be used to predict the likely trajectory of migrating tumor cells outside of the surgical margin, then this information could be used to inform the delineation of radiation therapy (RT) targets. In theory, an anisotropic expansion that takes large white matter bundle anatomy into account may maximize the chances of treating migrating cancer cells and minimize the amount of brain tissue exposed to high doses of ionizing radiation. Diffusion-weighted MRI (DW-MRI) can be used in combination with fiber tracking algorithms to model the trajectory of large white matter pathways using the direction and magnitude of water movement in tissue. The method presented here is a tool for translating a DW-MRI fiber tracking (tractography) dataset into a white matter path length (WMPL) map that assigns each voxel the shortest distance along a streamline back to a specified region of interest (ROI). We present an open-source WMPL tool, implemented in the package Diffusion Imaging in Python (DIPY), and code to convert the resulting WMPL map to anisotropic contours for RT in a commercial treatment planning system. This proof-of-concept lays the groundwork for future studies to evaluate the clinical value of incorporating tractography modeling into treatment planning.

[1]  J. Markert,et al.  Patterns of failure for glioblastoma multiforme following limited-margin radiation and concurrent temozolomide , 2014, Radiation oncology.

[2]  Roland G. Henry,et al.  Probabilistic streamline q-ball tractography using the residual bootstrap , 2008, NeuroImage.

[3]  Duan Xu,et al.  Q‐ball reconstruction of multimodal fiber orientations using the spherical harmonic basis , 2006, Magnetic resonance in medicine.

[4]  R. Guillevin,et al.  Simulation of anisotropic growth of low‐grade gliomas using diffusion tensor imaging , 2005, Magnetic resonance in medicine.

[5]  C. Hess,et al.  Malignant glioma: patterns of failure following individually tailored limited volume irradiation. , 1994, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[6]  J. Helpern,et al.  Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[7]  Shiao Y. Woo,et al.  Evaluation of peritumoral edema in the delineation of radiotherapy clinical target volumes for glioblastoma. , 2007, International journal of radiation oncology, biology, physics.

[8]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[9]  S. Lukacova,et al.  Diffusion tensor magnetic resonance imaging driven growth modeling for radiotherapy target definition in glioblastoma , 2017, Acta oncologica.

[10]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[11]  Maxime Descoteaux,et al.  Dipy, a library for the analysis of diffusion MRI data , 2014, Front. Neuroinform..

[12]  R. Daniel,et al.  Radiological evidence of glioma invasion of the central nervous system along tracts. , 2000, Surgical neurology.

[13]  R. Mirimanoff,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[14]  Fred H. Hochberg,et al.  Assumptions in the radiotherapy of glioblastoma , 1980, Neurology.

[15]  D. Trafalis,et al.  Glioblastoma multiforme: Pathogenesis and treatment. , 2015, Pharmacology & therapeutics.

[16]  W. Curran,et al.  Pattern of failure after limited margin radiotherapy and temozolomide for glioblastoma. , 2009, International journal of radiation oncology, biology, physics.

[17]  M. Westphal,et al.  Glioma invasion in the central nervous system. , 1996, Neurosurgery.

[18]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[19]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[20]  M. Westphal,et al.  Cost of migration: invasion of malignant gliomas and implications for treatment. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[22]  William H Hinson,et al.  Limited Margins Using Modern Radiotherapy Techniques Does Not Increase Marginal Failure Rate of Glioblastoma , 2014, American journal of clinical oncology.

[23]  Sinisa Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[24]  L. Remonda,et al.  Diffusion tensor imaging for target volume definition in glioblastoma multiforme , 2014, Strahlentherapie und Onkologie.

[25]  Jan Sijbers,et al.  Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data , 2014, NeuroImage.

[26]  Yaniv Assaf,et al.  Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain , 2005, NeuroImage.

[27]  Kesshi M Jordan,et al.  Cluster Confidence Index: A Streamline‐Wise Pathway Reproducibility Metric for Diffusion‐Weighted MRI Tractography , 2018, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[28]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[29]  Z L Gokaslan,et al.  A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. , 2001, Journal of neurosurgery.

[30]  Harald Sontheimer,et al.  A neurocentric perspective on glioma invasion , 2014, Nature Reviews Neuroscience.