A Family of Symmetric Distributions on the Circle

We propose a new family of symmetric unimodal distributions on the circle that contains the uniform, von Mises, cardioid, and wrapped Cauchy distributions, among others, as special cases. The basic form of the densities of this family is very simple, although its normalization constant involves an associated Legendre function. The family of distributions can also be derived by conditioning and projecting certain bivariate spherically and elliptically symmetric distributions on to the circle. Trigonometric moments are available, and a measure of variation is discussed. Aspects of maximum likelihood estimation are considered, and likelihood is used to fit the family of distributions to an example set of data. Finally, extension to a family of rotationally symmetric distributions on the sphere is briefly made.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  K. Shimizu,et al.  PEARSON TYPE VII DISTRIBUTIONS ON SPHERES , 2002 .

[3]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[4]  P. McCullagh Möbius transformation and Cauchy parameter estimation , 1996 .

[5]  D. Collett,et al.  Discriminating Between the Von Mises and Wrapped Normal Distributions , 1981 .

[6]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[7]  K. Mardia Statistics of Directional Data , 1972 .

[8]  S. Rao Jammalamadaka,et al.  Inference for wrapped symmetric α-stable circular models , 2003 .

[9]  B. Heller Circular Statistics in Biology, Edward Batschelet. Academic Press, London & New York (1981), 371, Price $69.50 , 1983 .

[10]  Arthur Pewsey,et al.  Testing circular symmetry , 2002 .

[11]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[12]  Do Le Minh,et al.  Using Bilinear Transformations to Induce Probability Distributions , 2003 .

[13]  M. C. Jones,et al.  Discrimination between the von Mises and wrapped normal distributions: just how big does the sample size have to be? , 2005 .

[14]  Ashis SenGupta,et al.  On optimal tests for isotropy against the symmetric wrapped stable‐circular uniform mixture family , 2001 .

[15]  Rudolf Jander,et al.  Die optische Richtungsorientierung der Roten Waldameise (Formica Ruea L.) , 1957, Zeitschrift für vergleichende Physiologie.

[16]  R. Royall Statistical Evidence: A Likelihood Paradigm , 1997 .

[17]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[18]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[19]  G. S. Watson Statistics on Spheres , 1983 .

[20]  T. Downs Some relationships among the von Mises distributions of different dimensions. , 1966, Biometrika.

[21]  Xu Xue Random Walk on a Circle , 1995 .