A molecular tool kit for the variable design of logic operations (NOR, INH, EnNOR).

A simple set of five components was used to design molecular logic gates based on phthalimide-sensitised Tb(III) luminescence, including the first report of an enabled NOR (EnNOR) gate.

[1]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[2]  Fernando Pina,et al.  Micelle effect on the ‘write–lock–read–unlock–erase’ cycle of 4′-hydroxyflavylium ion , 1999 .

[3]  A. Samanta,et al.  Multiple Logical Access with a Single Fluorophore–Spacer–Receptor System: Realization of Inhibit (INH) Logic Function , 2005 .

[4]  Daniel Collado,et al.  A natural-product-inspired photonic logic gate based on photoinduced electron-transfer-generated dual-channel fluorescence. , 2004, Organic letters.

[5]  F. Raymo Digital processing and communication with molecular switches , 2002 .

[6]  David J. Williams,et al.  Phthalimides: Supramolecular Interactions in Crystals, Hypersensitive Solution 1H-NMR Dynamics and Energy Transfer to Europium(III) and Terbium(III) States , 2003, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry.

[7]  Anthony Harriman,et al.  Reversible photorearrangement of N-substituted phthalimides: a flash photolysis study , 1979 .

[8]  McSkimming,et al.  An Anthracene-Based Photochromic System That Responds to Two Chemical Inputs We thank the EPSRC (UK) for the award of a project studentship (to G.M.). , 2000, Angewandte Chemie.

[9]  Fernando Pina,et al.  Open-Chain Polyamine Ligands Bearing an Anthracene Unit − Chemosensors for Logic Operations at the Molecular Level , 2001 .

[10]  Simon Parsons,et al.  Assembly of hydrophobic shells and shields around lanthanides. , 2002, Chemistry.

[11]  David Parker,et al.  Taking advantage of the pH and pO2 sensitivity of a luminescent macrocyclic terbium phenanthridyl complex , 1998 .

[12]  Gareth Brown,et al.  Molecules that add up , 2002 .

[13]  J. Fraser Stoddart,et al.  Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine , 1997 .

[14]  Stéphane Petoud,et al.  Polymetallic lanthanide complexes with PAMAM-naphthalimide dendritic ligands: luminescent lanthanide complexes formed in solution. , 2004, Journal of the American Chemical Society.

[15]  Georges Wipff,et al.  Luminescent lanthanide complexes of a bis-bipyridine-phosphine-oxide ligand as tools for anion detection. , 2002, Journal of the American Chemical Society.

[16]  Vincenzo Balzani,et al.  Molecular logic circuits. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  Thorfinnur Gunnlaugsson,et al.  Luminescent molecular logic gates: the two-input inhibit (INH) function , 2000 .

[18]  M Montalti,et al.  A luminescent anion sensor based on a europium hybrid complex. , 2001, Journal of the American Chemical Society.

[19]  Massimo Guardigli,et al.  Luminescent lanthanide complexes as photochemical supramolecular devices , 1993 .

[20]  H. T. Baytekin,et al.  A molecular NAND gate based on Watson-Crick base pairing. , 2000, Organic letters.

[21]  N. Chatterton,et al.  An efficient design for the rigid assembly of four bidentate chromophores in water-stable highly luminescent lanthanide complexes. , 2005, Angewandte Chemie.

[22]  A. P. Silva,et al.  Molecular Photoionic AND Logic Gates with Bright Fluorescence and “Off−On” Digital Action , 1997 .

[23]  Terence E. Rice,et al.  Proton‐Controlled Switching of Luminescence in Lanthanide Complexes in Aqueous Solution: pH Sensors Based on Long‐Lived Emission , 1996 .

[24]  Attila Demeter,et al.  Spectroscopic properties of aromatic dicarboximides. Part1.—N—H and N-methyl-substituted naphthalimides , 1994 .

[25]  T. Gunnlaugsson,et al.  Lanthanide macrocyclic quinolyl conjugates as luminescent molecular-level devices. , 2001, Journal of the American Chemical Society.

[26]  P. Gans,et al.  Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species , 1999 .

[27]  Fernando Pina,et al.  Artificial Chemical Systems Capable of Mimicking Some Elementary Properties of Neurons , 2000 .

[28]  Uwe Pischel,et al.  An inhibit (INH) molecular logic gate based on 1,8-naphthalimidesensitised europium luminescence , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[29]  Terence E. Rice,et al.  Integration of Logic Functions and Sequential Operation of Gates at the Molecular-Scale , 1999 .

[30]  Christophe Saudan,et al.  Proton-driven self-assembled systems based on cyclam-cored dendrimers and [Ru(bpy)(CN)4]2-. , 2004, Journal of the American Chemical Society.

[31]  Hiroshi Tsukube,et al.  Anion sensing with luminescent lanthanide complexes of tris(2-pyridylmethyl)amines: pronounced effects of lanthanide center and ligand chirality on anion selectivity and sensitivity. , 2002, Chemical communications.

[32]  A. P. de Silva,et al.  Molecular-scale logic gates. , 2004, Chemistry.

[33]  A. Griesbeck,et al.  Time-resolved spectroscopy of sulfur- and carboxy-substituted N-alkylphthalimides. , 2001, Chemistry.

[34]  R. S. Davidson,et al.  Intramolecular donor-acceptor complexes: N-(aminoalkyl)-phthalimides , 1974 .