Efficient algorithms for maximum regression depth
暂无分享,去创建一个
Bettina Speckmann | Joseph S. B. Mitchell | Micha Sharir | Marc J. van Kreveld | Jack Snoeyink | Peter Rousseeuw
[1] Micha Sharir. k-sets and random hulls , 1993, Comb..
[2] Mia Hubert,et al. The Catline for Deep Regression , 1998 .
[3] P. Rousseeuw,et al. Constructing the bivariate Tukey median , 1998 .
[4] P. Rousseeuw,et al. High-dimensional computation of the deepest location , 2000 .
[5] Leonidas J. Guibas,et al. The Exact Fitting Problem in Higher Dimensions , 1996, Comput. Geom..
[6] M. Hubert,et al. Regression depth - Rejoinder , 1999 .
[7] Mia Hubert,et al. Depth in an Arrangement of Hyperplanes , 1999, Discret. Comput. Geom..
[8] P. Rousseeuw,et al. Robustness of Deepest Regression , 2000 .
[9] Jan van Leeuwen,et al. Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..
[10] Bernard Chazelle,et al. Halfspace range search: An algorithmic application ofk-sets , 1986, Discret. Comput. Geom..
[11] Leonidas J. Guibas,et al. The exact fitting problem for points , 1991 .
[12] Raimund Seidel,et al. Constructing arrangements of lines and hyperplanes with applications , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[13] G. W. Peck. On 'k-sets' in the plane , 1985, Discret. Math..
[14] M. Keil,et al. A Simple Algorithm for Determining the Envelope of a Set of Lines , 1991, Inf. Process. Lett..
[15] Micha Sharir,et al. Optimal Slope Selection Via Expanders , 1993, CCCG.
[16] Géza Tóth,et al. Point Sets with Many k-Sets , 2000, SCG '00.
[17] Micha Sharir,et al. On the Zone Theorem for Hyperplane Arrangements , 1991, SIAM J. Comput..
[18] Tamal K. Dey,et al. Improved Bounds for Planar k -Sets and Related Problems , 1998, Discret. Comput. Geom..
[19] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[20] P. Rousseeuw,et al. Halfspace Depth and Regression Depth Characterize the Empirical Distribution , 1999 .
[21] Endre Szemerédi,et al. An Optimal-Time Algorithm for Slope Selection , 1989, SIAM J. Comput..
[22] David Eppstein,et al. Regression Depth and Center Points , 1998, Discret. Comput. Geom..
[23] Stefan Langerman,et al. An optimal algorithm for hyperplane depth in the plane , 2000, SODA '00.
[24] Jirí Matousek,et al. Randomized Optimal Algorithm for Slope Selection , 1991, Inf. Process. Lett..
[25] Godfried T. Toussaint,et al. On Envelopes of Arrangements of Lines , 1996, J. Algorithms.
[26] P. Rousseeuw,et al. Computing depth contours of bivariate point clouds , 1996 .
[27] Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmic amortized time , 2001, JACM.
[28] Regina Y. Liu,et al. Regression depth. Commentaries. Rejoinder , 1999 .
[29] David M. Mount,et al. A randomized algorithm for slope selection , 1992, Int. J. Comput. Geom. Appl..
[30] Bernard Chazelle,et al. Optimal Slope Selection Via Cuttings , 1994, CCCG.
[31] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[32] Bernard Chazelle,et al. Cutting hyperplanes for divide-and-conquer , 1993, Discret. Comput. Geom..
[33] Peter Rousseeuw,et al. Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..