Organic–inorganic hybrid solids: control of perhalometallate solid state structures

MX⋯HN+ hydrogen bond synthons have been exploited in preparation of crystalline salts [4,4′-H2bipy][MX4] [X = Cl, M = Pd, Pt, Co, Zn, Hg, Mn, Cd and Pb; X = Br, M = Pd, Co, Zn and Mn]. In these salts three structural forms for the halometallate species are observed: mononuclear square planar (M = Pd, Pt) or tetrahedral (M = Co, Zn, Hg) and polymeric cis edge-sharing octahedral (M = Mn, Cd, Pb). These correspond to three structural motifs which form the basis of the crystal structures formed in their [4,4′-H2bipy]2+ salts: ribbon polymer (M = Pt, Pd); herring-bone packing of cyclic dimers (M = Co, Zn, Hg); layer cross-linked polymers [{MX4}n]2n- (M = Mn, Cd, Pb). The factors controlling the structures adopted, the hierarchy of intermolecular interactions present in these crystals and the principles that may be inferred and exploited further are considered.

[1]  C. N. R. Rao,et al.  Exploration of a simple universal route to the myriad of open-framework metal phosphates , 2000 .

[2]  C. Rao,et al.  New open-framework zinc oxalates synthesized in the presence of structure-directing organic amines , 1999 .

[3]  A. Beatty,et al.  A Versatile Route to Porous Solids: Organic-Inorganic Hybrid Materials Assembled through Hydrogen Bonds. , 1999, Angewandte Chemie.

[4]  L. Brammer,et al.  Hydrogen bonding in substituted-ammonium salts of the tetracarbonylcobaltate(−I) anion: some insights into potential roles for transition metals in organometallic crystal engineering , 1999 .

[5]  Nicholas C. Norman,et al.  SECONDARY BONDING AS A POTENTIAL DESIGN ELEMENT FOR CRYSTAL ENGINEERING , 1999 .

[6]  L. Brammer,et al.  Self-Assembly of 1-D Chains of Different Topologies Using the Hydrogen-Bonded Inorganic Supramolecular Synthons N-H.Cl(2)M or N-H.Cl(3)M. , 1998, Inorganic chemistry.

[7]  L. Brammer,et al.  Supramolecular assembly of anion-channel and anion-layer structures of [PtL4]X2 (L=nicotinamide; X=Cl or PF6): surprisingly robust arene ring ‘herringbone’ motifs and adaptable amide–amide hydrogen bonding , 1998 .

[8]  G. A. Jeffrey,et al.  An Introduction to Hydrogen Bonding , 1997 .

[9]  P. Davies,et al.  Organoplatinum building blocks for one-dimensional hydrogen bonded polymeric structures , 1996 .

[10]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[11]  R. Crabtree,et al.  A Three-Center Hydrogen Bond in 2,6-Diphenylpyridinium Tetrachloroaurate , 1995 .

[12]  D. Braga,et al.  Ni(CO)4 and Fe(CO)5. A Study of Molecular Recognition and Crystal Construction , 1994 .

[13]  M. Ward,et al.  A study of crystal packing in a series of closely related square-planar palladium(II) and platinum(II) complexes , 1994 .

[14]  M. Zaworotko Crystal engineering of diamondoid networks , 1994 .

[15]  K. Seddon,et al.  The hydrogen bond and crystal engineering , 1994 .

[16]  V. McKee,et al.  The crystal structures of some chloromercury(II) anions with Co(III) complexes or protonated polyamines as cations , 1992 .

[17]  Owen Johnson,et al.  The development of versions 3 and 4 of the Cambridge Structural Database System , 1991, J. Chem. Inf. Comput. Sci..

[18]  J. Mroziňski,et al.  Crystal structure and magnetism of 4,4'-bipyridylium di-μ-bromotetrabromodicuprate(II) , 1990 .

[19]  C. Brock,et al.  Systematic effects of crystal-packing forces: biphenyl fragments with hydrogen atoms in all four ortho positions , 1989 .

[20]  R. Robert,et al.  Le tétrachloromanganate(II) de pyridinium 2[C5H5NH]+.[MnCl4]2− et le tétrabromomanganate(II) de pyridinium 2[C5H5NH]+.[MnBr4]2− , 1976 .

[21]  B. Krebs Die Kristallstruktur von Zirkoniumtetrachlorid , 1970 .