Heterozygosity and Chain Multivalents during Meiosis Illustrate Ongoing Evolution as a Result of Multiple Holokinetic Chromosome Fusions in the Genus Melinaea (Lepidoptera, Nymphalidae)

Mitotic and meiotic chromosomes from 2 taxa of the genus Melinaea, M. satevis cydon and M. “satevis” tarapotensis (Lepidoptera: Nymphalidae), and from hybrids produced in captivity were obtained using an improved spreading technique and were subsequently analyzed. In one of the taxa, the presence of trivalents and tetravalents at diakinesis/metaphase I is indicative of heterozygosity for multiple chromosome fusions or fissions, which might explain the highly variable number of chromosomes previously reported in this genus. Two large and complex multivalents were observed in the meiotic cells of the hybrid males (32 chromosomes) obtained from a cross between M. “s.” tarapotensis (28 chromosomes) and M. s. cydon (40-43 chromosomes). The contribution of the 2 different haploid karyotypes to these complex figures during meiosis is discussed, and a taxonomic revision is proposed. We conclude that chromosome evolution is active and ongoing, that the karyotype of the common ancestor consisted of at least 48 chromosomes, and that evolution by chromosome fusion rather than fission is responsible for this pattern. Complex chromosome evolution in this genus may drive reproductive isolation and speciation, and highlights the difficulties inherent to the systematics of this group. We also show that Melinaea chromosomes, classically considered as holocentric, are attached to unique, rather than multiple, spindle fibers.

[1]  J. Mallet,et al.  North Andean origin and diversification of the largest ithomiine butterfly genus , 2017, Scientific Reports.

[2]  J. Mallet,et al.  Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina , 2016, Molecular ecology.

[3]  M. Ohno,et al.  Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis , 2016 .

[4]  M. Elias,et al.  Unravelling the role of host plant expansion in the diversification of a Neotropical butterfly genus , 2016, BMC Evolutionary Biology.

[5]  M. Elias,et al.  Ecology, life history, and genetic differentiation in Neotropical Melinaea (Nymphalidae: Ithomiini) butterflies from north‐eastern Peru , 2016 .

[6]  J. Mallet,et al.  Diversification of clearwing butterflies with the rise of the Andes , 2015, Journal of biogeography.

[7]  V. Lukhtanov The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms , 2015, Comparative cytogenetics.

[8]  R. Vilà,et al.  Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies , 2015, BMC Evolutionary Biology.

[9]  V. Lukhtanov Chromosome number evolution in skippers (Lepidoptera, Hesperiidae) , 2014, Comparative cytogenetics.

[10]  Liisa Holm,et al.  The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera , 2014, Nature Communications.

[11]  Daniël P. Melters,et al.  Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis , 2012, Chromosome Research.

[12]  R. Vilà,et al.  Unexpected layers of cryptic diversity in wood white Leptidea butterflies. , 2011, Nature communications.

[13]  R. Vilà,et al.  Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation , 2011, BMC Evolutionary Biology.

[14]  J. Trigo Effects of pyrrolizidine alkaloids through different trophic levels , 2011, Phytochemistry Reviews.

[15]  B. Dutrillaux,et al.  (Ovo-)viviparity in the darkling beetle, Alegoria castelnaui (Tenebrioninae: Ulomini), from Guadeloupe. , 2010 .

[16]  J. Mallet,et al.  The anatomy of a ‘suture zone’ in Amazonian butterflies: a coalescent‐based test for vicariant geographic divergence and speciation , 2010, Molecular ecology.

[17]  M. Elias,et al.  Out of the Andes: patterns of diversification in clearwing butterflies , 2009, Molecular ecology.

[18]  K. Brown,et al.  Evolutionary patterns in chromosome numbers in neotropical Lepidoptera. I. Chromosomes of the Heliconiini (family Nymphalidae: subfamily Nymphalinae). , 2008, Hereditas.

[19]  R. I. Hill,et al.  Limited performance of DNA barcoding in a diverse community of tropical butterflies , 2007, Proceedings of the Royal Society B: Biological Sciences.

[20]  N. Pierce,et al.  KARYOTYPIC DIVERSITY AND SPECIATION IN AGRODIAETUS BUTTERFLIES , 2007, Evolution; international journal of organic evolution.

[21]  E. Bermingham,et al.  THE PHYLOGENETIC PATTERN OF SPECIATION AND WING PATTERN CHANGE IN NEOTROPICAL ITHOMIA BUTTERFLIES (LEPIDOPTERA: NYMPHALIDAE) , 2006, Evolution; international journal of organic evolution.

[22]  R. Gregory The evolution of the genome , 2005 .

[23]  J. Mallet,et al.  Strikingly variable divergence times inferred across an Amazonian butterfly ‘suture zone’ , 2005, Proceedings of the Royal Society B: Biological Sciences.

[24]  J. Plotkin,et al.  Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies , 2005, Nature.

[25]  M. Joron Polymorphic mimicry, microhabitat use, and sex‐specific behaviour , 2005, Journal of evolutionary biology.

[26]  K. Brown,et al.  Chromosome evolution in Neotropical Danainae and Ithomiinae (Lepidoptera). , 2005, Hereditas.

[27]  Peter Ockenfels,et al.  Semiochemicals derived from pyrrolizidine alkaloids in male ithomiine butterflies (Lepidoptera: Nymphalidae: Ithomiinae) , 2004 .

[28]  V. Lukhtanov Sex chromatin and sex chromosome systems in nonditrysian Lepidoptera (Insecta) , 2000 .

[29]  Maria da Luz Mathias,et al.  Environmental genetics: Rapid chromosomal evolution in island mice , 2000, Nature.

[30]  K. Wolf,et al.  Kinetic organization of metaphase I bivalents in spermatogenesis of Lepidoptera and Trichoptera species with small chromosome numbers , 1997, Heredity.

[31]  M. King Species Evolution: The Role of Chromosome Change , 1993 .

[32]  H. Winking,et al.  Robertsonian metacentrics in the mouse , 1976, Chromosoma.

[33]  H. de Lesse Les Nombres de Chromosomes Chez les lépidoptères Rhopalocères en Amérique centrale et colombie , 1970, Annales de la Société entomologique de France (N.S.).

[34]  N. K. Beliajeff Die Chromosomenkomplexe und ihre Beziehung zur Phylogenie bei den Lepidopteren , 1930, Zeitschrift für induktive Abstammungs- und Vererbungslehre.

[35]  M. Elias,et al.  Mimicry in Heliconius and Ithomiini butterflies: The profound consequences of an adaptation , 2015 .

[36]  T. Gregory Genome Size Evolution in Animals , 2005 .

[37]  J. Suja,et al.  Meiosis in Holocentric Chromosomes: Orientation and Segregation of an Autosome and Sex Chromosomes in Triatoma infestans (Heteroptera) , 2004, Chromosome Research.

[38]  K. Wolf The structure of condensed chromosomes in mitosis and meiosis of insects , 1996 .

[39]  J. Heppner Atlas of Neotropical Lepidoptera , 1984, Springer Netherlands.

[40]  M. Lombard,et al.  Chromosomal phylogeny of forty-two species or subspecies of cercopithecoids (Primates Catarrhini). , 1982, Annales de genetique.

[41]  B. Dutrillaux,et al.  Chromosomal evolution in Malagasy lemurs. II. Meiosis in intra- and interspecific hybrids in the genus Lemur. , 1977, Cytogenetics and cell genetics.

[42]  F. Muller Ituna and Thyridia; a remarkable case of mimicry in butterflies , 1879 .